Bundesministerium Klimaschutz, Umwelt, Energie, Mobilität, Innovation und Technologie

KLIMANEUTRALITÄT ÖSTERREICHS BIS 2040 – BEITRAG DER ÖSTERREICHISCHEN INDUSTRIE Abschlusspräsentation der wissenschaftlichen Begleitstudie

Bernhard Gahleitner, Bernhard Dachs, Christian Diendorfer (AIT)

Thomas Kienberger, <u>Peter Nagovnak (MUL)</u> Simon Moser, Hans Böhm (EI-JKU) Gregor Thenius, Karina Knaus (AEA)

INHALT

- Hintergrund & Zielsetzung
- Die österreichische Industrie im Detail: Status Quo und internationaler Vergleich
- Technisches Dekarbonisierungspotential am Beispiel der Sektoren
 - Eisen- und Stahlerzeugung
 - Steine und Erden, Glas
- Kosten der Transformation
- Schlussfolgerungen

Hintergrund und Zielsetzung

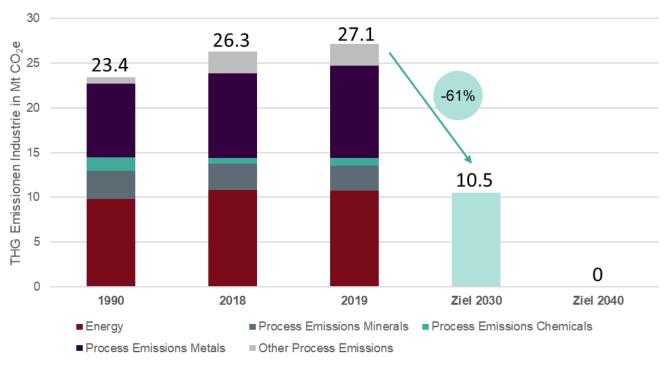
ZIELE DER STUDIE

- Analyse Status Quo: wie grün ist die österreichische Industrie im internationalen Vergleich?
- 2. Transformation: Unterstützung österreichischer Unternehmen bei der Entwicklung von innovativen Transformationstechnologien

Status Quo

- Klassifizierung
- CO₂ Fußabdruck Industrie, Zukunftstechnologien
- Internationale Benchmarks

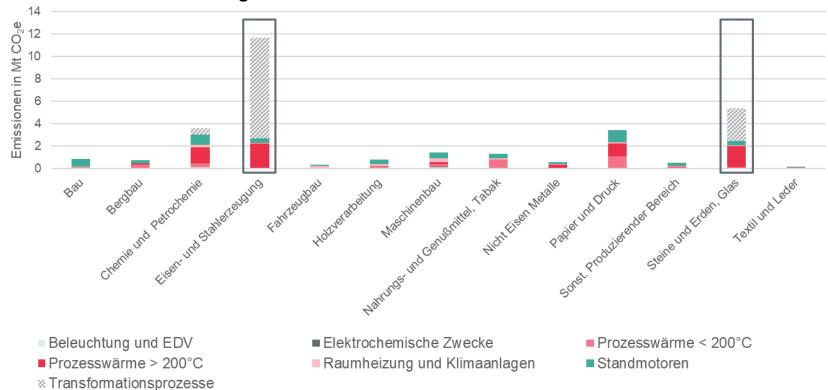
Österreichische Industrie 2040


Transformation

- Erarbeitung von Dekarbonisierungsstrategien
- Darstellung
 Dekarbonisierungspotentialen
- Kosten | Investitionen | Finanzierungsgaps

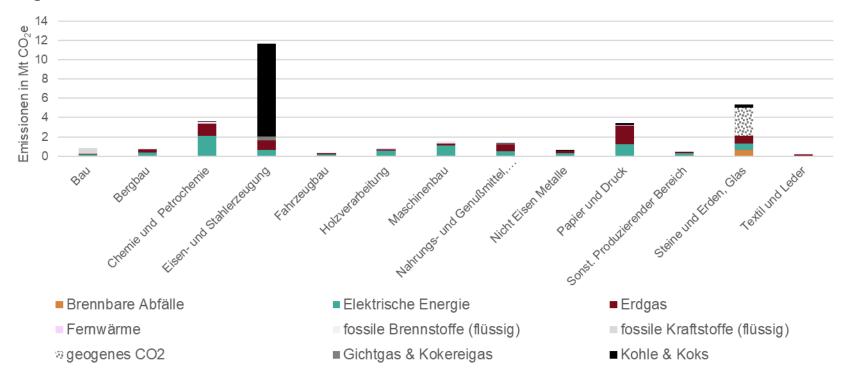
Zwischenziel 2030: THG-Reduktion um -55 %

Eine Reduktion um 55% bezogen auf 1990 entspricht einer Reduktion um 61% im Vergleich zu 2019

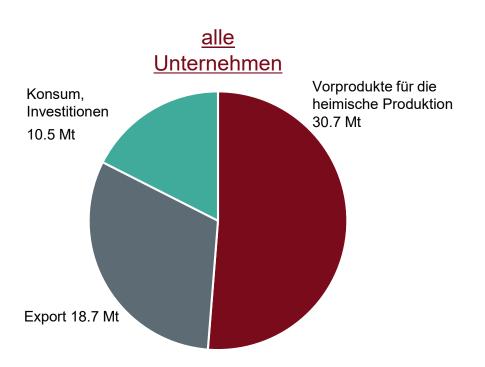


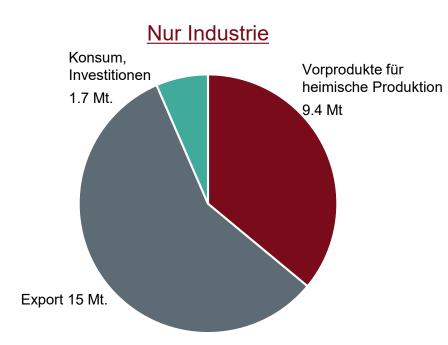
Die österreichische Industrie im Detail: Status Quo und internationaler Vergleich

THG-EMISSIONEN DER ÖSTERREICHISCHEN INDUSTRIE


Prozessbedingte Emissionen sind für einen Großteil der Emissionen verantwortlich, gefolgt von der Wärmebereitstellung

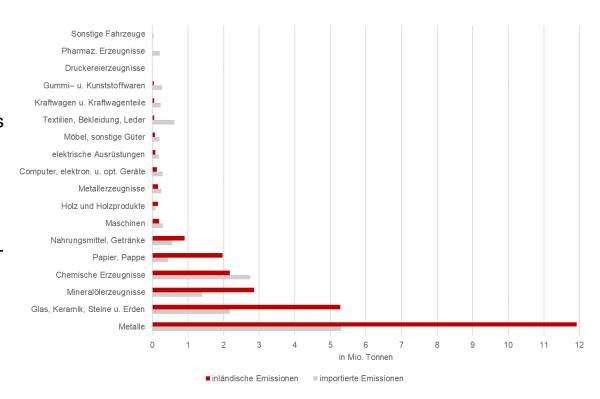
THG-EMISSIONEN DER ÖSTERREICHISCHEN INDUSTRIE


Das meiste CO₂ entsteht durch die Verbrennung von Kohle, gefolgt von Strom (indirekt) und Erdgas



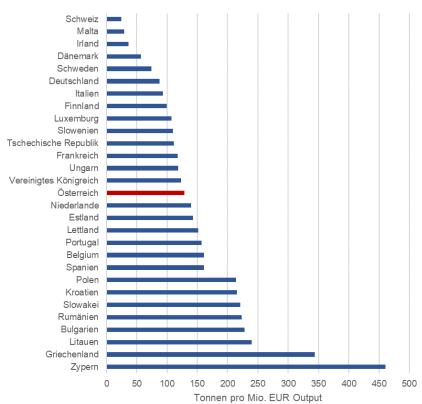
WOHIN GEHEN DIE EMISSIONEN?

Heimische Emissionen sind stark mit Exporten verbunden



IN IMPORTEN GEBUNDENE THG-EMISSIONEN

 In Importen gebundene Emissionen können mit Importdaten und der Emissionsintensität der Industrie des Ursprungslandes geschätzt werden


 Importierte Emissionen durch Industriegüter machen 15.3 Mt THG-Emissionen aus.

INTERNATIONALER VERGLEICH DER EMISSIONSINTENSITÄT

- Österreichs Industrie liegt beim Ausstoß an THG pro Outputeinheit im Mittelfeld der EU-Staaten.
- Das ist zu einem Gutteil eine Folge des großen Grundstoff-Sektors in Österreich
- Die in der Primärproduktion eingesetzten Prozesse entsprechen durchwegs den Best-Available-Technologies

ZUSAMMENFASSUNG STATUS QUO

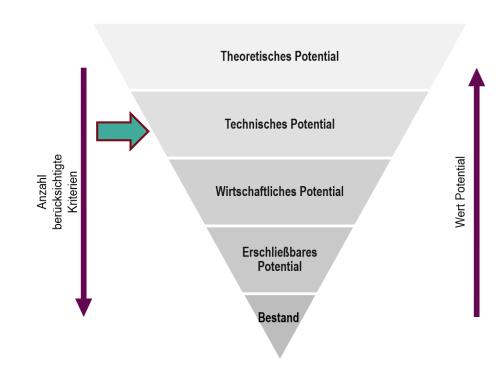
- Die THG-Emissionen sollen bis **2030 um 16.6 Mt**, bis **2040 um 27.1 Mt** CO₂e reduziert werden.
- Große Teile der Emissionen sind in der Produktion einiger weniger Güter konzentriert
- **Eisen- und Stahlproduktion** ist mit Abstand der größte direkte industrielle Emittent (ca. 12 Mt), gefolgt von **Steinen, Erden und Glas** (ca. 5 Mt) und Chemie bzw. Papiererzeugung (beide ca. 2 Mt).
- Im europäischen Vergleich liegt AT im Mittelfeld bei den Emissionen pro Wertschöpfung, wobei hier die Branchenstruktur einen wesentlichen Einfluss auf Vergleiche hat.
- Während Österreich über Vorprodukte 15,3 Mt CO₂e importiert, werden 15 Mt CO₂e an im Inland angefallenen Emissionen über Industriegüter exportiert.

Technisches Dekarbonisierungspotential

BILANZGRENZE DER INDUSTRIE

Bilanzgrenze der Industrie Bilanzgrenze des öffentlichen Energiesystems Prozessbedingt Energieproduzenten & Bilanzgrenze um die Anlagen und Prozesse -lieferanten aller österreichischen Industriestandorte des Industrieller öffentlichen Unternehmenseigene Anlagen und Verbrauch des Gesamtenergiebedarf I Energiesystems Sektor Energie / Energieumwandlungseinheiten (bspw. KWK-Anlagen, Kraft- oder Heizwerke, Strommix Europa 2040: (Total Energy Demand) CO₂-Emissionen Elektrolyseure, Reformierer, Hochöfen, Kokereien, etc.) 56 g/kWh der Industrie Energiebedingt Endenergie konsumierende Aggregate (Nieder-, Mittel-, Hochtemperaturanwendungen, CO₂-Emissionen Bedarf an CO2-Standmotoren, Beleuchtung...) verursachenden der vorgelagerten Mineralstoffen Energieerzeugung (bspw. Kalkstein)

BESTIMMUNG DES TECHNISCHEN DEKARBONISIERUNGSPOTENTIALS



Elektrifizierung

- Wärmepumpen
- Standmotoren

CO₂-neutrale Gase

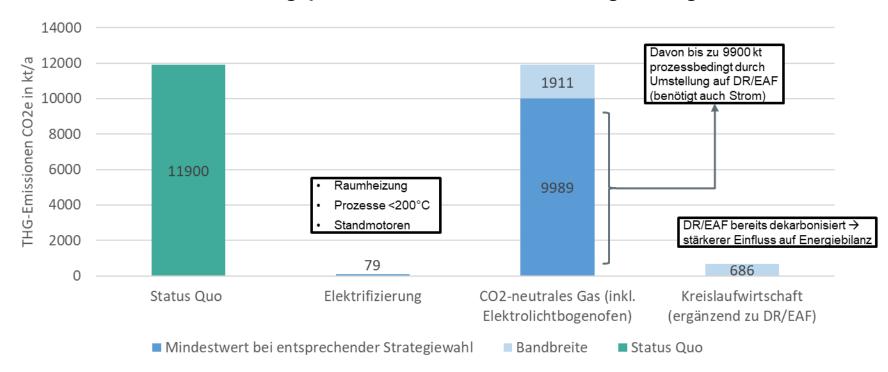
- Wasserstoff (aus Elektrolyse bzw. Methanpyrolyse)
- Bio-CH₄
- Carbon Capture
- Kreislaufwirtschaft

EISEN- UND STAHLERZEUGUNG

Energieeinsatz & CO₂-Emissionen Status Quo (2018)

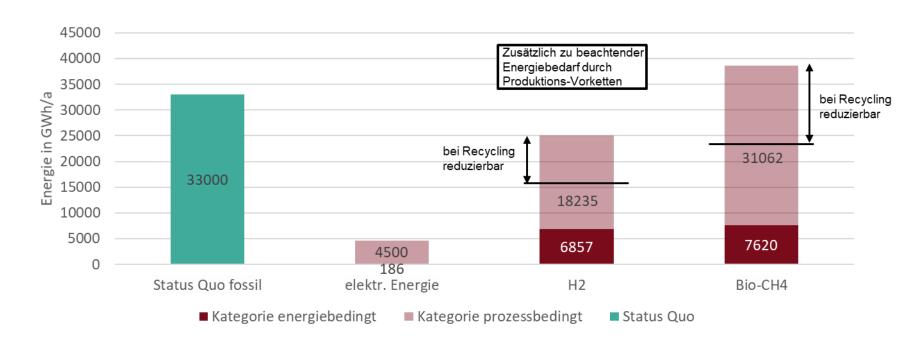
- ca. 6 Mt/a Primär-Stahlerzeugung (BF/BOF)
 - ~ 11 Mt CO₂e
 - Haupttreiber prozessbedingte Emissionen aus Reduktionsprozess (> 23 TWh Kohle/Koks)
- ca. 1 Mt/a Sekundär-Stahlerzeugung (Elektrolichtbogenofen)
 - Etwa die Hälfte des Endenergieeinsatzes durch Erdgas

EISEN- UND STAHLERZEUGUNG DEKARBONISIERUNGSOPTIONEN



Dekarbonisierungs -strategie	Emissionsursprung	Technologie	Anwendungsbereiche
Elektrifizierung	Energiebedingte Emissionen	Einsatz von (Hochtemperatur)-Wärmepumpen	Raumheizung und Klimaanlagen Prozesswärme < 200 °C
	Energiebedingte Emissionen	Elektrifizierung von Motoren	Standmotoren
	In Verbindung mit DR-Route bzw. vermehrtem Schrott- Einsatz	Elektrolichtbogenofen (EBO)	Stahlerzeugung in Verbindung mit Schrotteinsatz und Eisen aus Direktreduktion
CO ₂ -neutrales Gas	Prozessbedingte Emissionen	Direktreduktion von Eisenerz mit CO_2 -neutralen, grünen Gasen	Stahlerzeugung in Verbindung mit Elektrolichtbogenofen
	Energiebedingte Emissionen	H ₂ (aus Elektrolyse oder Methanpyrolyse)	Raumheizung und Klimaanlagen
	Energiebedingte Emissionen	H₂ (aus Methanpyrolyse)	Prozesswärme 200 °C Raumheizung und Klimaanlagen Prozesswärme 200 °C
	Energiebedingte Emissionen	Bio-CH ₄	Raumheizung und Klimaanlagen Prozesswärme 200 °C
Carbon Capture			Frozesswarme 4/2 200 C
Kreislaufwirtschaft	Prozessbedingte Emissionen	<u>mittels</u> Elektrolichtbogenofen Vermehrter Einsal Schrott im EBO zu Stahlherstellung	

EISEN- UND STAHLERZEUGUNG DEKARBONISIERUNGSOPTIONEN


Technisches Dekarbonisierungspotential nach Dekarbonisierungsstrategie

EISEN- UND STAHLERZEUGUNG DEKARBONISIERUNGSOPTIONEN

Mögliche Änderung der Energiebilanz nach Energieträger

ZUSAMMENFASSUNG EISEN- UND STAHLERZEUGUNG

- Großes Einsparungspotential aufgrund prozessbedingter Emissionen
- Durch eine Umstellung des Hochofenprozesses auf CO₂-neutrale Gase können rund 10 Mt CO₂e vermieden werden
- CO₂- und Energieintensität der Dekarbonisierungsstrategien sowie Aufwand für deren Etablierung sind abhängig von den vorgelagerten Produktionsketten
- Rund die Hälfte der für die Direktreduktion notwendigen Energie könnte über vermehrtes Schrottrecycling im Elektrolichtbogenofen eingespart werden

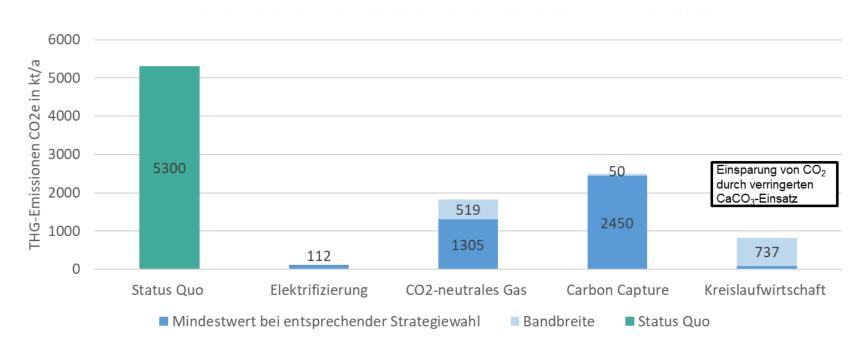
STEINE, ERDEN UND GLAS

Energieeinsatz & CO₂-Emissionen Status Quo (2018)

- THG-Emissionen des gesamten Sektors 2018: 4 602 kt CO₂e
 - Davon aus eingesetzten Mineralstoffen (Austreibungsprozess):
 2 908 kt CO₂e (63 %)
 - Davon energiebedingt: 1 694 kt CO₂e (37 %)

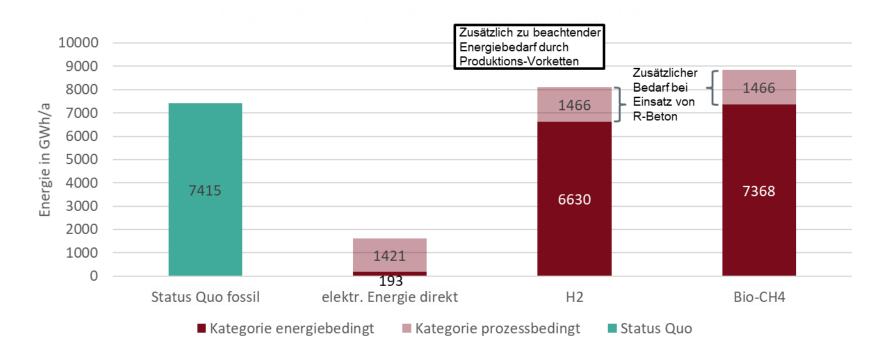
2018	Zement	Kalk	Magnesit	Glas	Ziegel	Dolomit	Na ₂ CO ₃	Sektor Gesamt
Prozess- emissionen in kt CO2e	1 827	544	365	38	105	19	10	2 908
% der sektoralen Prozess- emissionen	63 %	19 %	13 %	1 %	4 %	<1 %	<0,5 %	100 %

STEINE, ERDEN UND GLAS **DEKARBONISIERUNGSOPTIONEN**



Dekarbonisierungs -strategie	Emissionsursprung	Technologie	Anwendungsbereiche	
Elektrifizierung	Energiebedingte Emissionen	(Hochtemperatur)-Wärmepumpen	Raumheizung und Klimaanlagen	
			Prozesswärme < 200 °C	
	Energiebedingte Emissionen	Elektrifizierung von Motoren	Standmotoren	
CO ₂ -neutrales Gas	Energiebedingte Emissionen	H ₂ (aus Elektrolyse)	Raumheizung und Klimaanlagen	
			Prozesswärme 200 °C	
	Energiebedingte Emissionen	H ₂ (aus Methanpyrolyse)	Raumheizung und Klimaanlagen	
			Prozesswärme 200 °C	
	Energiebedingte Emissionen	Bio-CH ₄	Raumheizung und Klimaanlagen	
			Prozesswärme 200 °C	
Carbon Capture	Prozessbedingte Emissionen	Oxyfuel Verbrennung	Erzeugungsprozess	
	Prozessbedingte Emissionen	Aminwäsche	Erzeugungsprozess	
Kreislaufwirtschaft	Prozessbedingte Emissionen	Vermehrtes Recycling von Beton Erzeugungsprozess		

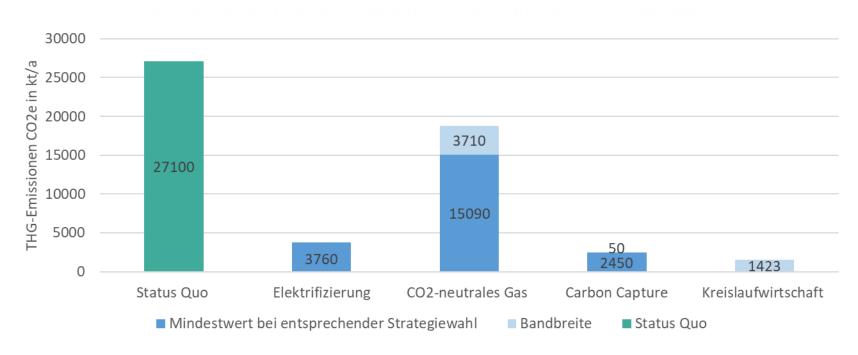
STEINE, ERDEN UND GLAS DEKARBONISIERUNGSOPTIONEN


Technisches Dekarbonisierungspotential nach Dekarbonisierungsstrategie

STEINE, ERDEN UND GLAS DEKARBONISIERUNGSOPTIONEN

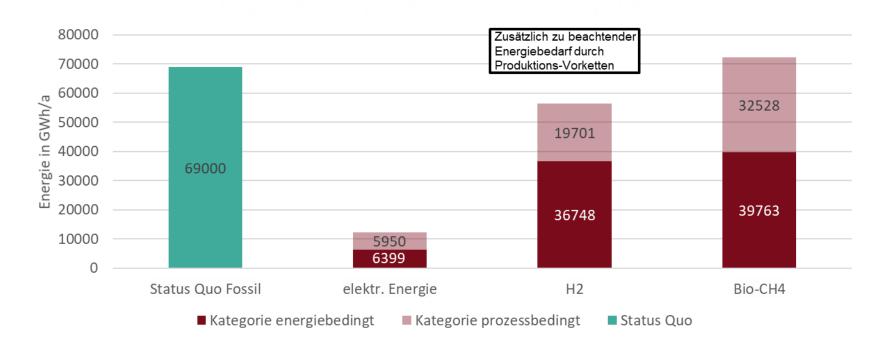
Mögliche Änderung der Energiebilanz nach Energieträger

ZUSAMMENFASSUNG STEINE, ERDEN UND GLAS



- Prozessbedingte Emissionen durch die Verarbeitung der eingesetzten Materialen k\u00f6nnen nicht vermieden werden → CO₂-Abscheidung ist notwendig
 - Verwertung des abgeschiedenen CO₂ und dazu notwendiger Aufwand nicht betrachtet
- THG- und Energieintensität der Dekarbonisierungsstrategien sowie Aufwand für deren Etablierung sind abhängig von den vorgelagerten Produktionsketten

DEKARBONISIERUNGSOPTIONEN DER ÖSTERREICHISCHEN INDUSTRIE


Technisches Dekarbonisiserungspotential nach Dekarbonisiserungsstrategie

DEKARBONISIERUNGSOPTIONEN DER ÖSTERREICHISCHEN INDUSTRIE

Mögliche Änderung der Energiebilanz nach Energieträger

ZUSAMMENFASSUNG DEKARBONISIERUNGSOPTIONEN

- Vor allem die Umstellung auf CO₂-neutrale Gase sowie der Einsatz von Carbon Capture (im Sektor Steine & Erden, Glas) weisen ein hohes technisches Dekarbonisierungspotential auf
- Elektrifizierung (ohne Elektrolyse) erlaubt eine Einsparung von bis zu 3,8 Mt.
- CO₂-neutrale Gase können ca. 18 Mt einsparen
- Kreislaufwirtschaft kann die Energieintensität in der Primär-Stahlerzeugung um bis zu 10
 TWh senken. In der Zementindustrie trägt sie hingegen primär zu einer THG-Verminderung
 durch geringeren Rohstoffeinsatz bei
- CCU der prozessbedingten Emissionen im Sektor Minerals ermöglicht eine Reduktion um ca. 2,4 Mt
- Beachtung der benötigten Vorketten bei der Bereitstellung CO₂-neutraler Gase und Weiterverwendung des abgeschiedenen CO₂

Kosten der Transformation

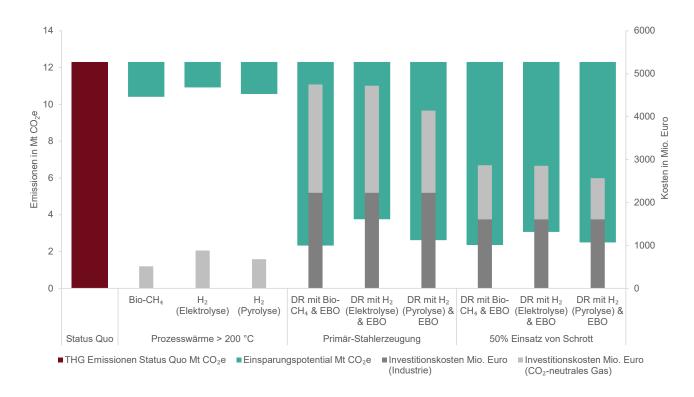
RAHMEN FÜR DIE KOSTENABSCHÄTZUNG

- Inhalt der vorliegenden Studie
 - Abschätzung des Investitionsbedarfs
 - Keine vergleichende Analyse der Gesamtkosten (inkl. OPEX)
- Zahlen geben daher Orientierung, welche Investitionskosten einzelne Optionen in den Industriesektoren auslösen können
- Investitionskosten der einzelnen Dekarbonisierungsoptionen k\u00f6nnen nicht addiert → konsistent mit Darstellung der technischen Dekarbonisierungspotentiale
- Vergleichende Betrachtung der Gesamtkosten (inklusive einheitlicher Bewertung der OPEX) bedarf gesonderter ausführlicher Analysen, die
 - eine gesamtwirtschaftliche Berechnung in Szenarien sowie
 - die Einbindung der relevanten Stakeholder (z.B. zur Identifizierung typischer Investitionszyklen)
 enthalten.

METHODIK ZUR BESTIMMUNG DER KOSTEN DER TRANSFORMATION

- Ermittlung der Kosten auf Basis bestehender Literatur
- Keine eigene Wirtschaftlichkeitsberechnung oder Ähnliches
- Spezifische Gesamtkosten (€/reduzierter Tonne CO₂) werden wenn vorhanden angegeben aber aufgrund unterschiedlicher Annahmen und Ansatz in den einzelnen Quellen nicht miteinander verglichen
- Konzentration auf direkte Investitionskosten
 - Bildet unmittelbaren Kapitalbedarf ab
 - Vergleichbar und einheitlicher in unterschiedlichen Quellen
- Ermittlung spezifischer Investitionskosten (je Energieeinheit oder Produkt)
- Basierend auf identifizierten Energie- und Produktionsmengen: Berechnung der gesamten Investitionskosten bis 2040 (inkl. Investitionskostenkosten für die Produktion der CO₂-neutralen Gase)

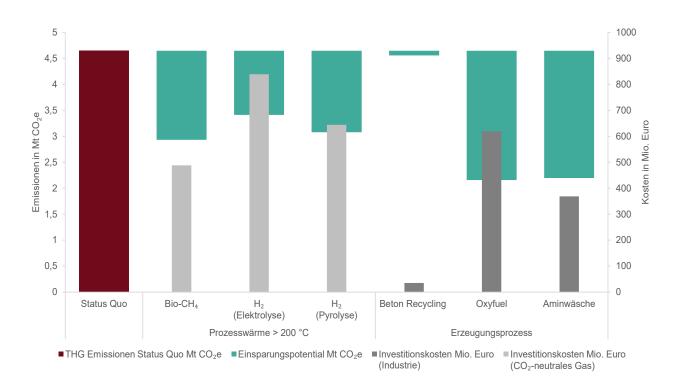
REFERENZDATEN FÜR KOSTEN



- Herausforderung: Keine einzelne Quelle für die Kosten aller Technologien: Kombination unterschiedlicher Quellen notwendig
- Vorgehensweise: Innerhalb eines Sektors bzw. einer Maßnahmenfamilie soweit möglich Verwendung einheitlicher Quellen und Verifizierung/Plausibilisierung mit anderen Quellen
- Hauptsächlich verwendete Quellen
 - Klimaneutrale Industrie, Schlüsseltechnologien und Politikoptionen für Stahl, Chemie und Zement. Agora Energiewende.
 - Klimapfade f

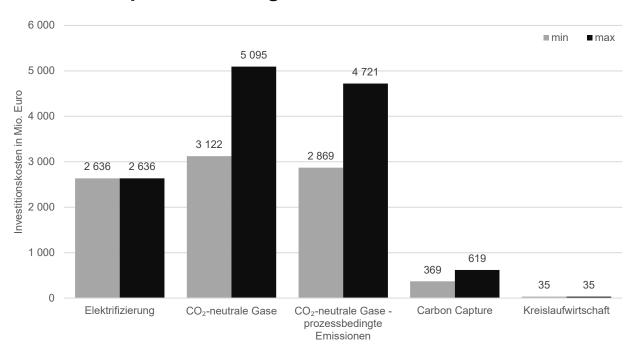
 ür Deutschland. Boston Consulting Group und Prognos.
 - Net-Zero Europe, Decarbonization pathways and socioeconomic implications. McKinsey & Company.
 - Industrial Transformation 2050, Pathways to Net-Zero Emissions from EU Heavy Industry. Material Economics.
 - CEMCAP comparative techno-economic analysis of CO₂ capture in cement plants. CEMCAP Projekt
 - Roadmap Chemie, Auf dem Weg zu einer treibhausgasneutralen chemischen Industrie in Deutschland. Dechema, Futurecamp
 - Erneuerbare Prozesswärme, Integration von Solarthermie und Wärmepumpen in industrielle Prozesse. AIT et al.
 - IEA G20 Hydrogen report: Assumptions. International Energy Agency
 - Closed Loop Economy: the Case of Concrete in the Netherlands. Universiteit Leiden & TU Delft

INVESTITIONSKOSTEN EISEN- & STAHLERZEUGUNG



- Hauptanteil der Gesamtinvestitionskosten für die Reduktion prozessbedingter THG
- Prozessbedingte THG:
 Rund 50% der
 Investitionskosten für
 die Prozessumstellung
 und 50% für die
 Produktion der
 Reduktionsmittel (CO₂neutrale Gase)

INVESTITIONSKOSTEN STEINE & ERDEN, GLAS



Umstellung der
Prozesswärme
> 200° C verursacht die
höchsten
Investitionskosten im
Sektor - vorausgesetzt,
dass die Kosten für die
Produktion der
Energieträger im
Industriesektor anfallen.

ÜBERSICHT KOSTEN DER TRANSFORMATION

Große Schwankungsbreiten bei den Investitionskosten für CO₂-neutrales Gas und für die Reduktion prozessbedingter Emissionen.

ZUSAMMENFASSUNG INVESTITIONSKOSTEN

- Die gesamten Investitionskosten für die dargestellten Dekarbonisierungsoptionen liegen je nach gewählten Technologien bis 2040 zwischen 5.6 und 11.2 Mrd. Euro (exkl. Betriebskosten) → Unterschiede je nachdem, welche Optionen gewählt werden
- Mehr als die Hälfte der 11.2 Mrd. Euro sind Investitionskosten für H₂ Produktion
- Knapp die Hälfte der 11.2 Mrd. Euro fallen im Stahlsektor an (inkl. Investitionskosten für eigene H₂ Produktion)
- Abschätzung der Gesamtkosten (inkl. Betriebskosten) sowie der optimalen Kombination der einzelnen Maßnahmen erfordert weitere Untersuchungen und war nicht Teil dieser Studie

Schlussfolgerungen

SCHLUSSFOLGERUNGEN

- Die Dekarbonisierung der österreichischen Industrie ist mit Hilfe verschiedener Technologien möglich, die auf den in der Studie dargelegten Strategien Elektrifizierung, Einsatz CO₂-neutraler Gase, Carbon Capture und Kreislaufwirtschaft beruhen.
- Die Minimierung der prozessbezogenen Emissionen stellt den größten Hebel auf dem Weg zur Dekarbonisierung dar.
- Die Umsetzung bedarf einer gesamtsystemischen Analyse und daraus abgeleiteten Maßnahmen, die die Herausforderungen der Sektoren hinsichtlich Energie- und Ressourcenwirtschaft, Prozesse und Raumplanung berücksichtigen
- Die Diskussion von Carbon Capture Technologien muss die weiterführende Verwendung oder Speicherung berücksichtigen
- Eine gesamtwirtschaftliche Analyse der Transformationskosten erfordert weitere Untersuchungen

THANK YOU!