Bundesministerium Klimaschutz, Umwelt, Energie, Mobilität, Innovation und Technologie

Testaufgaben zu CNOSSOS-AT – Lärmbewertungsmethoden für den Bereich Fluglärm

für Fluglärmszenarien zur qualitätsgesicherten Anwendung der Lärmbewertungsmethoden für den Bereich Fluglärm. Beschreibung der Testaufgaben

Impressum

Medieninhaber, Verleger und Herausgeber:

Bundesministerium für Klimaschutz, Umwelt, Energie, Mobilität, Innovation und

Technologie, Radetzkystraße 2, 1030 Wien

Autorinnen und Autoren:

Werner Kohl, Janosch Blaul

Wölfel Engineering GmbH + Co. KG, Höchberg, BRD

Fabian Probst, Bernd Huber

DataKustik GmbH, Gilching, BRD

Michael Gillé, Daniel Haußmann

SoundPLAN GmbH, Backnang, BRD

Andreas Neukirchen

Ziviltechnikerkanzlei BR h.c. Dipl.-Ing. Andreas Neukirchen M.A., Gaaden bei Mödling

Gesamtumsetzung: Mag. Johannes Deimel-Zelenka (BMK, Abteilung IV/L1)

Wien, 2021. Stand: 15. Oktober 2021

Copyright und Haftung:

Auszugsweiser Abdruck ist nur mit Quellenangabe gestattet, alle sonstigen Rechte sind ohne schriftliche Zustimmung des Medieninhabers unzulässig.

Es wird darauf verwiesen, dass alle Angaben in dieser Publikation trotz sorgfältiger Bearbeitung ohne Gewähr erfolgen und eine Haftung des Bundeskanzleramtes und der Autorin/des Autors ausgeschlossen ist. Rechtausführungen stellen die unverbindliche Meinung der Autorin/des Autors dar und können der Rechtsprechung der unabhängigen Gerichte keinesfalls vorgreifen.

Rückmeldungen: Ihre Überlegungen zu vorliegender Publikation übermitteln Sie bitte an <u>umgebungslaerm-flug@bmk.gv.at</u>.

Vorwort

Die EU-Umgebungslärmrichtlinie sieht die Einführung eines harmonisierten Berechnungsverfahrens für die Lärmkartierung in Europa entsprechend Artikel 6 (2) der Richtlinie 2002/49/EG vor. Die Europäische Kommission hat dazu mit CNOSSOS-EU (Common NOise aSSessment methOdS) gemeinsame Lärmbewertungsmethoden für alle relevanten Quellenarten, d. h. auch für Luftverkehrsgeräusche entwickelt.

Am Beispiel eines fiktiven Flugplatzes (lokal, eben) wird anhand von Einzelszenarien und eines Gesamtszenariums für den Expositionspegel sowie die Beurteilungspegel LDEN und LN der Umgebungslärmrichtlinie überprüft, ob die rechnerische nationale Umsetzung des Berechnungsverfahrens mit einer Präzision von mindestens ± 0,5 dB erfolgt.

Abstract:

The EU environmental noise directive provides for the introduction of a harmonized calculation method for noise mapping in Europe in accordance with Article 6 (2) of Environmental Noise Directive 2002/49/EG. For this purpose, the European Commission has developed common noise assessment methods for all relevant sources, including air traffic noise, with CNOSSOS-EU (Common NOise assessment methods).

Using a fictitious airport (local, even), a single scenario and a total scenario for the exposure level as well as the assessment levels LDEN and LN of the Environmental Noise Directive are used to check whether the computational national implementation of the calculation methods is achieved with a precision of at least \pm 0.5 dB

Inhalt

Vorwort.		3
Abstra	act:	3
1 Einleitu	ung	7
1.1 Zwec	k der Testaufgaben	7
1.2 Refer	enzfälle	8
1.3 Flugp	ılatz	8
1.4 Flugs	trecken	9
1.5 Luftfa	ahrzeugdaten	9
1.6 Immi	ssionspunkte	. 10
1.7 Refer	enzergebnisse	. 11
1.8 Quali	tätsziele	. 13
	olätter für Flugplätze und Luftfahrzeugtypen	
2.1 Dater	nblätter für Flugplätze	. 14
2.2 Luftfa	ahrzeuggruppe A320	. 14
2.2.1	Datenblatt A320-S	. 14
2.2.2	Datenblatt A320-L	. 17
2.3 Luftfa	ahrzeuggruppe CRJ9	. 21
2.3.1	Datenblatt CRJ9-S	. 21
2.3.2	Datenblatt CRJ9-L	. 24
2.4 Luftfa	ahrzeuggruppe DH8C	. 28
2.4.1	Datenblatt DH8C-S	. 28
2.4.2	Datenblatt DH8C-L	. 32
2.5 Neub	erechnung der NPD-Daten für die meteorologischen Umgebungsbedingungen	35
3 Koordi	naten der Immissionspunkte	.43
4 Refere	nzergebnisse	.45
4.1 Relev	ante Szenarien	. 45
4.1.1	Einzelszenarien	. 45
4.1.2	Gesamtszenarium	. 46
4.2 Ereig	nispegel	. 47
4.2.1	Ereignispegel je Luftfahrzeugtyp	. 47
4.2.2	Gesamtpegel, Maximalpegelhäufigkeit	. 50
4.3 Beisp	iel für Zwischenergebnisse	. 51
4.3.1	Allgemein	. 51
4.3.2	Flugbahnsegmentbildung	. 52

4.3.3	Akustische Teilergebnisse	56
4.3.4	Eingangsparameter für die Bestimmung der akustischen Korrekturwerte	58
Tabellen	verzeichnis	60
Abbildun	gsverzeichnis	62
A Anhan	g Datenblätter für Flugplätze	63
	meines	
A.1.1	Datum der DES-Erstellung	63
A.1.2	Ist Jahr	63
A.1.3	Meterologische Umgebungsbedingungen	63
A.2 Flugp	olatzdaten	64
A.2.1	Flugplatz	64
A.2.2	Flugplatzbezugspunkt	64
A.2.3	Flugplatzhöhe über NN /m	64
A.2.4	Start- und Landebahnen	65
A.3 Flugb	ewegungsangaben	66
A.3.1	Gesamtzahl der Flugbewegungen mit Flugzeugen in den 12 Monaten des Ist	_
Jahres	s 66	
A.4 Flugb	etrieb in der Luft	67
A.4.1	Abflugstrecken mit Flugzeugen	67
A.4.2	Abflugstrecken mit Flugzeugen	69
A.4.3	Anflugstrecken mit Flugzeugen	71
A.4.4	Anflugstrecken mit Flugzeugen	73
A.4.5	Platzrunden mit Flugzeugen	75
B Anhan	g (normativ)	77
B.1 CASE	_ID: A320 AC	77
B.2 CASE	_ID: A320 AS	79
B.3 CASE	_ID: A320 DC	80
B.4 CASE	_ID: A320 DS	82
B.5 CASE	_ID: A320 CI	83
B.6 CASE	_ID: CRJ9 AC	86
B.7 CASE	_ID: CRJ9 AS	88
B.8 CASE	_ID: CRJ9 DC	89
B.9 CASE	_ID: CRJ9 DS	91
B.10	CASE_ID: CRJ9 CI	92
B.11	CASE_ID: DH8C AC	95
B.12	CASE_ID: DH8C AS	96

Literatu	verzeichnis	105
C.3 CASI	E_ID: A320 DS, IP05, geometrische Winkelbeziehungen	104
C.2 CASI	E_ID: A320 DS, IP05, Eingangsdaten für NPD-Interpolation	103
C.1 CASI	E_ID: A320 DS, IP05, geometrische Flugsegmentparameter	102
C Anhar	ng (normativ)	102
B.15	CASE_ID: DH8C CI	100
B.14	CASE_ID: DH8C DS	
B.13	CASE_ID: DH8C DC	97

1 Einleitung

Die Erstellung der gegenständlichen Testaufgaben zu CNOSSOS-AT – Lärmbewertungsmethoden für den Bereich Fluglärm wurden im Auftrag des Bundesministeriums für Klimaschutz, Umwelt, Energie, Mobilität, Innovation und Technologie, Radetzkystraße 2, 1030 Wien, von dem Software-Konsortium betehend aus den Firma DataKustik GmbH, Gilching, BRD, Wölfel Engineering GmbH + Co. KG, Höchberg, BRD, SoundPLAN GmbH, Backnang, BRD unter der fachlichen Begleitung der Ziviltechnikerkanzlei BR h.c. Dipl.-Ing. Andreas Neukirchen M.A., Gaaden bei Mödling durchgeführt.

1.1 Zweck der Testaufgaben

Im Rahmen der Vereinheitlichung der Berechnungsverfahren für die Umsetzung der Umgebungslärmrichtlinie hat die Europäische Union die Richtlinie 2015/996 vom 19. Mai 2015 sowie der Ergänzung vom 21.12.2020 [2] zur Festlegung gemeinsamer Lärmbewertungsmethoden gemäß der Richtlinie 2002/49/EG erlassen. Auf Basis ihrer Umsetzung in das nationale Recht soll der Einfluss der Belastung durch den Luftverkehr in der Umgebung von Flugplätzen ermittelt werden.

Da die Ergebnisse der Ermittlung erhebliche umweltpolitische Konsequenzen haben, ist es notwendig, dass sich die Qualität der Ergebnisse sichern lässt. Dabei geht es nicht um die Genauigkeit, d. h. die Übereinstimmung von Rechnung und Messung, sondern um die Präzision, d. h., dass bei gleichen Eingangsdaten verschiedene Softwarerealisierungen die gleichen Ergebnisse bei der Ermittlung der Belastung in der Umgebung der Flugplätze erzielen.

Zu diesem Zweck wurde der nachfolgende Testflugplatz mit entsprechenden "Referenzfällen" (siehe Kapitel 1.2) konzipiert. Konzeptionell baut der Testflugplatz auf einen Vorschlag von ECAC.CEAC Doc 29 (4th Edition) Volume 3, Part 1 - Reference Cases and Verification Framework - auf.

Es handelt sich bewusst um einen fiktiven Flugplatz, da es im Rahmen der Präzisionsprüfung darum geht, möglichst eine Vielzahl von definierten Verfahrens- bzw. Berechnungsschritten zu überprüfen. Dazu gehören insbesondere die Bildung der Flugbahnsegmente für den Startlauf, den Anfangssteigflug und das Landerollen. Das Ergebnis der Ermittlung der Flugbahnsegmente hängt von der Befolgung einer bestimmten Reihenfolge der Verfahrensschritte ab.

1.2 Referenzfälle

Die Referenzfälle (CASE_ID) stellen einen umfassenden und bewährten Satz von Eingangsdaten dar, um die Ergebnisse der Berechnungen von Softwareumsetzungen unterschiedlicher Anbieter bzw. Entwickler prüfen und vergleichen zu können. Im Gegensatz zum Testflugplatz von ECAC.CEAC Doc 29 (4th Edition) basieren die vorliegenden Referenzfälle auf tatsächlichen Flugzeugen, deren Parameter in der ANP-Datenbank als feste Referenz dienen.

Die Referenzfälle umfassen Kombinationen von drei realen Referenzflugzeugen auf gebogenen und geradlinigen Strecken, für An- und Abflugbetrieb sowie einer Platzrunde. Insgesamt werden 15 Referenzfälle aus den Kombinationen von Strecke und Luftfahrzeug gebildet und deren Ergebnisse zum Vergleich bereitgestellt.

Um die Identifizierung zu erleichtern, werden die Bezeichnungen der Referenzfälle aus der Kombination von Luftfahrzeugtyp (ICAO ATD) und Routen zusammengesetzt. Die Bezeichnungen werden in den folgenden Abschnitten vorgestellt.

Bei den drei realen Luftfahrzeugtypen handelt es sich um

- Strahltriebflugzeug mit Mantelstromtriebwerken am Heck (ICAO ATD: CRJ9)
- Strahltriebflugzeug mit Mantelstromtriebwerken an den Flügeln (ICAO ATD: A320)
- Propellerflugzeug (ICAO ATD: DH8C)

Es ist darauf zu achten, dass die ICAO ATD über die ACFT ID mit der NPD ID verbunden ist.

Der Testflugplatz von ECAC.CEAC Doc 29 (4th Edition) benutzt hingegen nur die NPD_ID für ihre hypothetischen Luftfahrzeuge.

1.3 Flugplatz

Die Referenzfälle basieren auf einem hypothetischen Flugplatz, von dem die Luftfahrzeuge starten und auf dem sie landen. Der Flugplatz ist gemäß den Vorgaben der Anlage A aus [2] beschrieben (siehe Anhang A.2). Es handelt sich um ein Einbahnsystem mit strikter West-/Ostausrichtung. Der Flughafenbezugspunkt liegt im Nullpunkt des lokalen Koordinatensystems. Der Bahnbezugspunkt befindet sich in der Mitte der Start- und Landebahn.

Es wird von einem ebenen Gelände ausgegangen ohne Verwendung eines digitalen Geländemodells (DGM).

1.4 Flugstrecken

Es werden fünf Referenzstrecken (siehe Anhang A.4) in Form von Geraden und Kurven definiert, die - bis auf die Platzrunde - alle in östlicher Bewegungsrichtung orientiert sind. Es gibt je eine gekrümmte und eine gerade Route (dargestellt durch Codes "C" für "curved" und "S" für "straight") für beide An- und Abflugoperationen (dargestellt durch die Codes "A" für "arrival" bzw. "D" für "departure"). Die Platzrunde (dargestellt durch den Code "CI") hat zwei 180 Grad-Kurven. Dabei ist auf die Konvention der Beschreibungsrichtung zu achten.

Um die Rechnungen nicht unnötig zu verkomplizieren, wurde auf eine Korridorerweiterung verzichtet.

Die fünf Strecken werden daher durch die folgenden Bezeichnungen gekennzeichnet: "AC" und "AS" für gebogene und gerade Ankunftsstrecken bzw. "DC" und "DS" für gebogene und gerade Abflugrouten sowie "CI" für die Platzrunde.

Es gibt insgesamt 15 Referenzfälle. Jeder Referenzfall hat eine eindeutige "CASE_ID" auf der Grundlage der Flugzeug- und Routenbezeichnung, die im vorangegangenen Absatz eingeführt wurden. So lautet "CASE_ID" z. B. "A320 DS" für das Beispiel in Kapitel 4.3

1.5 Luftfahrzeugdaten

Für die verwendeten Luftfahrzeuge werden jeweils in 3 Tabellen die relevanten Eingangsdaten zur Verfügung gestellt (siehe Kapitel 2).

Die erste Tabelle dient der grundsätzlichen Einordnung bzw. Zuordnung des Luftfahrzeugs im Kontext der Anlagen F aus [3]. Ausgehend von der ICAO_ATD, die eine Luftfahrzeugklasse darstellt, muss die Zuweisung zu einer bestimmten Ausführung des Luftfahrzeugtyps (ACFT_ID) erfolgen, um eine Eindeutigkeit sicherzustellen. So werden z. B. für die verwendete A320 (ICAO_ATD) die Eigenschaften der A320-232 (ACFT_ID) und nicht etwa der A320-211 (ACFT_ID) übernommen.

Jeder bestimmten Ausführung des Luftfahrzeugtyps (ACFT_ID) ist genau ein Triebwerkstyp (NPD_ID) und Spektralnummern für den An- und Abflug zugeordnet (siehe Anlage F, Tabelle 1, Luftfahrzeuge). Jedoch

kann dieser Triebwerkstyp bei verschiedenen ACFT_ID vorkommen. Der A320-232 (ACFT_ID) ist mit dem Triebwerktyp V2527A (NPD_ID) ausgestattet. Für den jeweiligen Triebwerkstyp sind die akustischen Daten aus den Anlagen F Tabelle 10, NPD-Daten für Luftfahrzeuge, Tabelle 11, Spektralklassen für Luftfahrzeuge aus [3] in der Tabelle 3: Datenblatt A320-S, NPD-Tabelle, ID V2527A, bzw. Tabelle 2:

Datenblatt A320-S, Terzspektrum, Spektralnummer 103 (Kapitel 2) übernommen. Für die weitere Rechnung ist es von Belang, ob die Zuordnung des Pegels zum Leistungsparameter des Triebwerks in Newton (Strahl) oder in Prozent des maximalen Schubs (Propeller) angegeben ist.

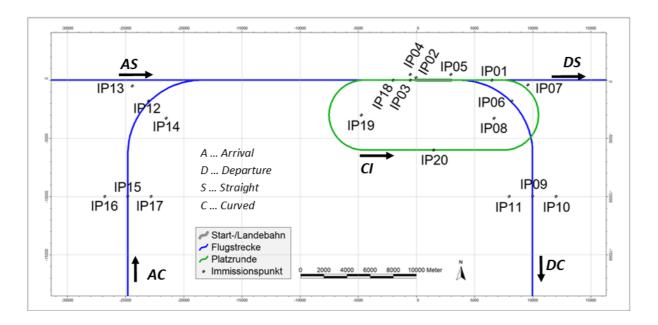
Angegeben wird die Spektralnummer und die seitliche Richtwirkung (Lateral Directivity ID).

Die Tabelle 4: Datenblatt A320-S, Fixpunkt-Profil und Tabelle 8: Datenblatt A320-L, Fixpunkt-Profil, beschreiben die Flugprofile, hier am Beispiel ACFT_ID = "A320-232", die für die Flugbahnsegmentierung verwendet werden müssen. Bei den verwendeten Flugprofilen handelt es sich um standardisierte Fixpunkt-Profile, die für die realen Luftfahrzeuge den Tabellen 5 und 6 der Anlage F aus [3] entnommen wurden. Prozedurale Profile sind nicht Gegenstand der Prüfung.

In der jeweils dritten Tabelle ist der Expositionspegel ("SEL") in seiner spektralen Verteilung in Abhängigkeit von der Schubeinstellung aufgeführt.

1.6 Immissionspunkte

Für alle Referenzfälle werden Referenzergebnisse vorgelegt. Dazu sind 20 Immissionspunkte definiert und mit ihren X-, Y- und Z-Koordinaten in Kapitel 3 aufgelistet. Die Immissionspunkte liegen auf dem Boden und haben demzufolge die Höhe z = 0 m. Sie werden als IPO1 bis IP20 bezeichnet.


Nicht alle Immissionspunkte sind für alle Referenzfälle relevant. Es wurde u. a. auf solche Kombinationen von Referenzfällen und Immissionspunkten verzichtet, bei denen die Einzelbeiträge weit unter dem höchsten Einzelbeitrag liegen. So wurde z. B. für die Route AS darauf verzichtet, aufgrund des Abstandes der Flugspur zu IP16 den Pegel zumindest für die Einzelszenarien zu ermitteln. Natürlich gilt dies erst recht für die Routen DC und DS.

Die Ergebnisse an den unterschiedlichen Immissionspunkten sind sensitiv gegenüber verschiedenen Elementen der Berechnung. Zum Beispiel sind die Immissionspunkte IP06 - IP11 von Flugzeugen im Überflug betroffen, so dass die Pegel mit den Referenzergebnissen übereinstimmen können, auch wenn

es Fehler bei der Berechnung der Startrollstrecke und seiner Segmentierung gibt. Die Immissionspunkte IPO2 – IPO5 befinden sich jedoch in der Nähe der Start- und Landepiste und erfordern daher, dass die Berechnung der Immissionsbeiträge durch die Startrollstrecke korrekt implementiert werden, damit sie mit den Referenzergebnissen übereinstimmen. Der Immissionspunkt IP20 nimmt insofern eine Sonderstellung ein, als er nur zur Überprüfung des Horizontalflugteiles in der Platzrunde gedacht ist.

Die Abbildung 1 zeigt die Flugstrecken sowie die Lage der zwanzig Immissionspunkte.

Abbildung 1: Streckendarstellung mit Immissionspunkten

Quelle: Darstellung, Wölfel Engineering GmbH + Co. KG

1.7 Referenzergebnisse

Alle relevanten Kombinationen von Referenzfällen und Immissionspunkten und damit zu berechnende Einzelszenarien sind in Kapitel 4.1 aufgeführt. Hinzu kommt ein Gesamtszenarium, bei dem alle Routen mit allen Luftfahrzeugtypen für alle 20 IP zu berechnen sind.

Die Referenzergebnisse sollen eine relativ schnelle und effiziente Überprüfung der Entwicklungsmodellergebnisse gegenüber den Referenzergebnissen ermöglichen.

Die Berechnung des Gesamtszenariums ist eine relativ schnelle und einfache Modellierungsaufgabe. Diese Ergebnisse liefern daher einen Maßstab, mit dem Entwickler die Leistung eines neuen Modells überprüfen können. Ein derartiger Vergleich wird hervorheben, wo Unterschiede zwischen den Gesamtausgaben eines Entwicklungsmodells und den Referenzergebnissen bestehen.

Die für den Testflugplatz zu berechnenden Kenngrößen sind der Expositionspegel (LpAE) sowie die beiden Beurteilungskenngrößen der Umgebungslärmrichtlinie (LDEN und LN). Nicht Gegenstand der Prüfung sind Rasterberechnungen sowie daraus abgeleitete Isolinien und letztlich die Bestimmung der Anzahl der Bewohner eines Gebäudes.

Alle Referenzpegel sind in Kapitel 4.2 aufgelistet.

Für jede Einzelpunktberechnung müssen zusätzlich Zwischenergebnisse (siehe Kapitel 4.3) generiert werden. Für die Lesbarkeit sollten dies die Geometrie der Flugbahnteilsegmente, die akustischen Teilergebnisse und die Eingangsparameter für die Bestimmung der akustischen Korrekturwerte sein.

Die Referenzsegmentergebnisse umfassen die Ergebnisse für die Hauptberechnungsparameter für jedes Segment der Trajektorien der fünfzehn Referenzfälle. Diese Parameter umfassen:

- Profilgeometrie
- den Abstand und den Schub zur Interpolation von NPD-Kurven
- den NPD-Schallexpositionspegel ("baseline_SEL")
- Entfernungen und Winkel zur Berechnung der Pegelanpassungen
- die Pegelanpassungen
- den Segmentexpositionspegel.

Die Referenzsegmentergebnisse liefern die Ergebnisse für die Hauptparameter bei jedem Schritt der Berechnung. Entwickler können diese Ergebnisse verwenden, um etwaige Diskrepanzen zwischen den Ergebnissen eines Entwicklungsmodells und den Referenzergebnissen zu diagnostizieren.

Der Vergleich der Pegel für die unterschiedlichen Immissionspunkte kann daher den Entwicklern helfen, Bereiche zu identifizieren, in denen ihre Entwicklungsmodelle von der Methodik [1] abweichen. Sobald diese Bereiche bekannt sind, kann eine fokussierte Diagnose unter Verwendung der Referenzsegmentergebnisse durchgeführt werden.

1.8 Qualitätsziele

Für das Überprüfungsverfahren wird ein Datenerfassungssystem auf Grundlage des QSI-Formates analog DIN 45687 zur Verfügung gestellt (siehe auch Anhang A).

Die Geometrie (Flugbahnsegmente) darf höchstens eine Abweichung von ± 1 m aufweisen.

Von den Referenzpegeln darf höchsten um \pm 0,5 dB abgewichen werden. Eine maximale Pegelabweichung von \pm 0,1 dB ist anzustreben.

2 Datenblätter für Flugplätze und Luftfahrzeugtypen

2.1 Datenblätter für Flugplätze

Die Datenblätter für Flugplätze werden im Anhang A dargestellt.

2.2 Luftfahrzeuggruppe A320

2.2.1 Datenblatt A320-S

Tabelle 1: Datenblatt A320-S, allgemeine Daten

ACFT_ID	Beschreibung	Antrieb	Anzahl Triebwerke	NPD_ID	Leistungs- parameter	Spektrainr. Abflug (Departure Spectrai Class ID)	Identifikation der seitlichen Richtwirkung (Lateral Directivity ID)
A320- 232	70 t < MTOM <= 130 t Ch >= 3	Jet	2	V2527A	N	103	Flügel

Tabelle 2: Datenblatt A320-S, Terzspektrum, Spektralnummer 103

Frequenz /Hz	Pegel /dB
50	56,7
63	66,1
80	70,1
100	72,8
125	76,6
160	73,0
200	74,5
250	77,0
315	75,3
400	72,2
500	72,2
630	71,2
800	70,2
1.000	70,0
1.250	69,6
1.600	71,1
2.000	70,6
2.500	67,1
3.150	63,4
4.000	63,5
5.000	58,2
6.300	51,5
8.000	42,3
10.000	37,7

Tabelle 3: Datenblatt A320-S, NPD-Tabelle, ID V2527A

Beurteilungsgröße	L _{pASmax}	L _{pASmax}	LpASmax	LpASmax	SEL	SEL	SEL	SEL
Schubeinstellung	10000	14000	19000	23000	10000	14000	19000	23000
200 ft	94,8	96,7	101,2	104,0	95,0	98,3	102,5	104,6
400 ft	86,3	88,6	93,9	96,9	90,2	93,9	98,4	100,7
630 ft	80,5	83,5	89,0	92,2	86,8	90,9	95,5	98,0
1000 ft	74,8	78,4	84,0	87,3	83,5	87,6	92,3	95,0
2000 ft	66,5	70,5	76,1	79,4	78,1	82,1	87,2	90,0
4000 ft	57,6	61,7	67,3	70,8	71,8	75,8	81,1	84,3
6300 ft	51,1	55,3	61,1	64,7	67,2	71,1	76,7	80,0
10000 ft	44,0	48,1	54,1	57,9	61,9	65,6	71,5	75,1
16000 ft	36,2	40,1	46,3	50,3	55,9	59,4	65,7	69,5
25000 ft	28,2	31,8	38,2	42,0	49,4	52,8	59,4	63,3

Tabelle 4: Datenblatt A320-S, Fixpunkt-Profil

ACFT_ID	Profil_ID	Schritt	Entfernung/m	Höhe über Flugplatz /m	TAS /(m/s)	Schub/ N pro Triebwerk
A320-232	A320-S	1	0,00	0,00	0,00	110076,05
A320-232	A320-S	2	1812,25	0,00	83,69	91647,07
A320-232	A320-S	3	3684,54	304,80	84,93	93041,18
A320-232	A320-S	4	5921,41	413,31	109,72	88301,13
A320-232	A320-S	5	6829,78	455,80	118,05	86754,18
A320-232	A320-S	6	7134,58	487,56	118,26	67774,02
A320-232	A320-S	7	11232,95	914,40	120,73	70274,67

ACFT_ID	Profil_ID	Schritt	Entfernung /m	Höhe über Flugplatz /m	TAS /(m/s)	Schub/ N pro Triebwerk
A320-232	A320-S	8	13431,99	992,76	133,74	70245,53
A320-232	A320-S	9	20364,82	1676,40	138,32	73361,45
A320-232	A320-S	10	26970,56	2286,00	142,59	75596,80

2.2.2 Datenblatt A320-L

Tabelle 5: Datenblatt A320-L, allgemeine Daten

ACFT_ID	Beschreibung	Antrieb	Anzahl Triebwerke	NPD_ID	Leistungs- parameter	Spektralnr. Anflug (Approach Spectral Class ID)	Identifikation der seitlichen Richtwirkung (Lateral Directivity ID)
A320- 232	70 t < MTOM <= 130 t Ch >= 3	Jet	2	V2527A	N	205	Flügel

Tabelle 6: Datenblatt A320-L, Terzspektrum, Spektralnummer 205

Frequenz /Hz	Pegel /dB
50	68,3
63	60,7
80	64,6
100	67,4
125	78,4
160	74,8
200	71,4
250	72,4
315	72,0
400	72,4
500	71,6
630	72,0
800	71,0
1.000	70,0
1.250	68,9
1.600	67,2
2.000	65,8
2.500	64,4
3.150	63,0
4.000	62,0
5.000	60,6
6.300	54,4
8.000	48,5
10.000	39,0

Tabelle 7: Datenblatt A320-L, NPD-Tabelle, ID V2527A

Beurteilungsgröße	L _{pASmax}	L _{pASmax}	L _{pASmax}	SEL	SEL	SEL
Schubeinstellung	2000	2700	6000	2000	2700	6000
200 ft	89,3	89,5	91,6	93,1	93,3	94,7
400 ft	82,8	83,0	84,7	89,1	89,2	90,5
630 ft	78,2	78,3	79,5	86,1	86,2	87,4
1000 ft	73,4	73,5	74,2	82,9	83,0	83,9
2000 ft	65,8	65,8	66,5	77,7	77,7	78,5
4000 ft	57,4	57,4	58,0	71,7	71,8	72,3
6300 ft	51,2	51,3	51,9	67,1	67,2	67,7
10000 ft	44,4	44,4	45,0	61,9	62,0	62,5
16000 ft	36,7	36,7	37,2	55,8	55,8	56,3
25000 ft	28,6	28,6	29,1	49,2	49,3	49,7

Tabelle 8: Datenblatt A320-L, Fixpunkt-Profil

ACFT_ID	Profil_ID	Schritt	Entfernung /m	Höhe über Flugplatz /m	TAS /(m/s)	Schub/ N pro Triebwerk
A320-232	A320-L	1	-1248,05	0,00	15,28	11787,73
A320-232	A320-L	2	-394,79	0,00	66,72	70726,38
A320-232	A320-L	3	-300,00	0,00	68,26	19545,26
A320-232	A320-L	4	10279,18	554,43	70,06	20881,59
A320-232	A320-L	5	11423,28	614,39	73,76	14576,08
A320-232	A320-L	6	11728,08	630,36	74,69	4,45
A320-232	A320-L	7	15048,94	804,40	91,56	4,45
A320-232	A320-L	8	22963,71	1219,20	99,28	4,45
A320-232	A320-L	9	24349,54	1219,20	107,51	4,45
A320-232	A320-L	10	30031,99	1219,20	133,95	4,45
A320-232	A320-L	11	30336,79	1219,20	135,24	18314,71
A320-232	A320-L	12	60816,79	1219,20	135,24	18314,71

2.3 Luftfahrzeuggruppe CRJ9

2.3.1 Datenblatt CRJ9-S

Tabelle 9: Datenblatt CRJ9-S, allgemeine Daten

ACFT	_ID	Beschreibung	Antrieb	Anzahl Triebwerke	NPD_ID	Leistungs- parameter	Spektrainr. Abflug (Departure Spectrai Class ID)	Identifikation der seitlichen Richtwirkung (Lateral Directivity ID)
CRJ9	-ER	20 t < MTOM <= 50 t Ch >= 3	Jet	2	CF348C5	N	113	Rumpf

Tabelle 10: Datenblatt CRJ9-S, Terzspektrum, Spektralnummer 113

Frequenz /Hz	Pegel /dB
50	58,5
63	57,9
80	60,7
100	67,0
125	71,2
160	72,6
200	70,3
250	72,7
315	72,9
400	73,5
500	72,8
630	72,0
800	71,3
1.000	70,0
1.250	68,9
1.600	67,1
2.000	64,5
2.500	63,0
3.150	60,2
4.000	55,8
5.000	52,1
6.300	45,1
8.000	38,8
10.000	29,6

Tabelle 11: Datenblatt CRJ9-S, NPD-Tabelle, ID CF348C5

Beurteilungsgröße	LpASmax	LpASmax	SEL	SEL
Schubeinstellung	7250	16250	7250	16250
200 ft	94,5	103,6	96,4	104,7
400 ft	87,9	97,1	92,3	100,9
630 ft	83,5	92,6	89,5	98,2
1000 ft	78,7	87,9	86,5	95,3
2000 ft	71,0	80,2	81,5	90,4
4000 ft	62,3	71,6	75,3	84,4
6300 ft	56,0	65,3	70,4	79,6
10000 ft	48,8	58,3	64,7	74,0
16000 ft	40,5	50,3	58,0	67,6
25000 ft	31,7	42,0	50,6	60,7

Tabelle 12: Datenblatt CRJ9-S, Fixpunkt-Profil

ACFT_ID	Profil_ID	Schritt	Entfernung /m	Höhe über Flugplatz /m	TAS /(m/s)	Schub/ N pro Triebwerk
CRJ9-ER	CRJ9-S	1	0,00	0,00	0,00	58913,65
CRJ9-ER	CRJ9-S	2	1906,04	0,00	86,42	46377,69
CRJ9-ER	CRJ9-S	3	2851,71	141,73	87,04	46788,17
CRJ9-ER	CRJ9-S	4	3822,62	304,80	87,71	47243,80
CRJ9-ER	CRJ9-S	5	4957,18	334,82	105,71	44776,16
CRJ9-ER	CRJ9-S	6	5261,98	371,89	105,91	38409,81
CRJ9-ER	CRJ9-S	7	9723,70	914,40	108,74	39762,37
CRJ9-ER	CRJ9-S	8	12636,83	976,49	133,64	37933,80
CRJ9-ER	CRJ9-S	9	33652,18	3048,00	148,25	42685,64

2.3.2 Datenblatt CRJ9-L

Tabelle 13: Datenblatt CRJ9-L, allgemeine Daten

ACFT_ID	Beschreibung	Antrieb	Anzahl Triebwerke	NPD_ID	Leistungs- parameter	Spektralnr. Anflug (Approach Spectral Class ID)	Identifikation der seitlichen Richtwirkung (Lateral Directivity ID)
CRJ9-ER	20 t < MTOM <= 50 t Ch >= 3	Jet	2	CF348C5	N	216	Rumpf

Tabelle 14: Datenblatt CRJ9-L, Terzspektrum, Spektralnummer 216

Frequenz /Hz	Pegel /dB
50	68,0
63	63,1
80	64,7
100	71,2
125	74,3
160	75,0
200	70,3
250	72,6
315	72,1
400	73,3
500	71,3
630	70,7
800	70,3
1.000	70,0
1.250	69,3
1.600	68,0
2.000	67,8
2.500	66,3
3.150	64,4
4.000	62,0
5.000	57,2
6.300	52,2
8.000	43,5
10.000	33,1

Tabelle 15: Datenblatt CRJ9-L, NPD-Tabelle, ID CF348C5

Beurteilungsgröße	L _{pASmax}	L _{pASmax}	SEL	SEL
Schubeinstellung	2500	7250	2500	7250
200 ft	89,7	91,3	93,1	95,2
400 ft	83,1	84,7	89,2	91,0
630 ft	78,6	80,2	86,4	88,1
1000 ft	73,8	75,4	83,3	85,0
2000 ft	66,2	67,6	78,2	79,8
4000 ft	57,6	58,9	72,0	73,6
6300 ft	51,3	52,6	67,1	68,8
10000 ft	44,1	45,5	61,5	63,2
16000 ft	36,0	37,6	54,9	56,8
25000 ft	27,3	29,2	47,7	49,9

Tabelle 16: Datenblatt CRJ9-L, Fixpunkt-Profil

ACFT_ID	Profil_ID	Schritt	Entfernung /m	Höhe über Flugplatz /m	TAS /(m/s)	Schub/ N pro Triebwerk
CRJ9-ER	CRJ9-L	1	-1197,33	0,00	15,28	6016,19
CRJ9-ER	CRJ9-L	2	-426,80	0,00	71,40	6016,19
CRJ9-ER	CRJ9-L	3	-300,00	0,00	80,19	15831,59
CRJ9-ER	CRJ9-L	4	11331,87	609,60	73,51	16967,21
CRJ9-ER	CRJ9-L	5	22658,91	1203,23	75,67	18266,71
CRJ9-ER	CRJ9-L	6	22963,71	1219,20	75,72	18473,37
CRJ9-ER	CRJ9-L	7	24182,91	1219,20	75,72	18473,37
CRJ9-ER	CRJ9-L	8	24487,71	1219,20	75,72	4,45
CRJ9-ER	CRJ9-L	9	30170,15	1219,20	132,87	4,45
CRJ9-ER	CRJ9-L	10	30474,95	1219,20	135,24	12397,62
CRJ9-ER	CRJ9-L	11	60954,95	1219,20	135,24	12397,62

2.4 Luftfahrzeuggruppe DH8C

2.4.1 Datenblatt DH8C-S

Tabelle 17: Datenblatt DH8C-S, allgemeine Daten

ACFT_ID	Beschreibung	Antrieb	Anzahl Triebwerke	NPD_ID	Leistungs- parameter	Spektrainr. Abflug (Departure Spectrai Class ID)	Identifikation der seitlichen Richtwirkung (Lateral Directivity ID)
DHC830	MTOM > 15 t Ch >= 3	Prop	2	PW120	%	112	Prop

Tabelle 18: Datenblatt DH8C-S, Terzspektrum, Spektralnummer 112

Frequenz /Hz	Pegel /dB
50	74,0
63	95,0
80	92,0
100	75,0
125	96,0
160	90,0
200	74,9
250	78,0
315	75,0
400	75,0
500	74,1
630	74,0
800	72,0
1.000	70,0
1.250	71,0
1.600	72,0
2.000	71,0
2.500	70,0
3.150	66,0
4.000	64,0
5.000	60,0
6.300	54,0
8.000	46,0
10.000	39,9

Tabelle 19: Datenblatt DH8C-S, NPD-Tabelle, ID PW120

Beurteilungsgröße	L _{pASmax}	L _{pASmax}	L _{pASmax}	SEL	SEL	SEL
Schubeinstellung	90	100	150	90	100	150
200 ft	82,8	85,2	90,2	84,6	87	92
400 ft	76,9	79,4	84,4	81	83,5	88,5
630 ft	72,9	75,8	80,8	78,5	81,4	86,4
1000 ft	68,7	71,9	76,9	75,9	79,1	84,1
2000 ft	62,8	65,9	70,9	72,3	75,4	80,4
4000 ft	56,3	59,7	64,7	68,1	71,5	76,5
6300 ft	51,8	55,3	60,3	65,2	68,7	73,7
10000 ft	47,3	51	56	62,2	65,9	70,9
16000 ft	42,3	46,2	51,2	58,8	62,7	67,7
25000 ft	37,6	41,6	46,6	55,6	59,6	64,6

Tabelle 20: Datenblatt DH8C-S, Fixpunkt-Profil

ACFT_ID	Profil_ID	Schritt	Entfernung /m	Höhe über Flugplatz /m	TAS /(m/s)	Schub/ % pro Triebwerk
DHC830	DH8C-S	1	0,00	0,00	0,00	150,90
DHC830	DH8C-S	2	842,86	0,00	57,25	95,13
DHC830	DH8C-S	3	2803,25	304,80	58,08	97,17
DHC830	DH8C-S	4	3490,36	377,01	63,32	92,80
DHC830	DH8C-S	5	3795,16	398,83	65,69	83,52
DHC830	DH8C-S	6	4579,22	454,91	71,40	77,29
DHC830	DH8C-S	7	8720,27	914,40	72,99	80,05
DHC830	DH8C-S	8	14789,44	1263,06	97,02	63,37
DHC830	DH8C-S	9	20961,13	1676,40	99,02	65,86
DHC830	DH8C-S	10	30370,36	2286,00	102,11	69,54
DHC830	DH8C-S	11	42792,30	3048,00	106,12	74,13

2.4.2 Datenblatt DH8C-L

Tabelle 21: Datenblatt DH8C-L, allgemeine Daten

ACFT_ID	Beschreibung	Antrieb	Anzahl Triebwerke	NPD_ID	Leistungs- parameter	Spektralnr. Anflug (Approach Spectral Class ID)	Identifikation der seitlichen Richtwirkung (Lateral Directivity ID)
CRJ9-ER	MTOM > 15 t Ch >= 3	Prop	2	PW120	%	213	Prop

Tabelle 22: Datenblatt DH8C-L, Terzspektrum, Spektralnummer 213

Frequenz /Hz	Pegel /dB		
50	64,0		
63	73,0		
80	76,0		
100	71,0		
125	82,0		
160	83,0		
200	67,0		
250	71,0		
315	70,0		
400	69,0		
500	69,0		
630	68,0		
800	67,0		
1.000	70,0 69,0		
1.250			
1.600	67,0		
2.000	64,0		
2.500	60,0		
3.150	57,0		
4.000	54,0		
5.000	49,0		
6.300	42,0		
8.000	32,0		
10.000	20,0		

Tabelle 23: Datenblatt DH8C-L, NPD-Tabelle, ID PW120

Beurteilungsgröße	L _{pASmax}	L _{pASmax}	SEL	SEL
Schubeinstellung	35	40	35	40
200 ft	87,1	90,0	88,9	91,8
400 ft	80,3	83,7	84,4	87,8
630 ft	75,5	79,2	81,1	84,8
1000 ft	70,5	74,3	77,7	81,5
2000 ft	62,4	66,7	71,9	76,2
4000 ft	54,0	59,0	65,8	70,8
6300 ft	48,9	54,0	62,3	67,4
10000 ft	43,8	48,8	58,7	63,7
16000 ft	39,1	43,4	55,6	59,9
25000 ft	34,8	38,1	52,8	56,1

Tabelle 24: Datenblatt DH8C-L, Fixpunkt-Profil

ACFT_ID	Profil_ID	Schritt	Entfernung /m	Höhe über Flugplatz /m	TAS /(m/s)	Schub/ % pro Triebwerk
DHC830	DH8C-L	1	-969,34	0,00	15,28	4,40
DHC830	DH8C-L	2	-366,93	0,00	52,26	26,10
DHC830	DH8C-L	3	-300,00	0,00	55,04	18,71
DHC830	DH8C-L	4	5515,92	304,80	55,86	19,40
DHC830	DH8C-L	5	8423,89	457,20	60,96	16,42
DHC830	DH8C-L	6	22658,91	1203,23	69,08	9,85
DHC830	DH8C-L	7	22963,71	1219,20	69,24	13,03
DHC830	DH8C-L	8	28646,15	1219,20	95,63	13,03
DHC830	DH8C-L	9	28950,95	1219,20	96,81	30,39
DHC830	DH8C-L	10	44190,95	1219,20	96,81	30,39

2.5 Neuberechnung der NPD-Daten für die meteorologischen Umgebungsbedingunge

Bei Abweichungen von den meteorologischen Referenzbedingungen, die den Berechnungen der NPD-Daten zugrunde liegen, ist es notwendig, die NPD-Daten in zweifacher Weise anzupassen, und zwar zum einen durch eine Impedanzanpassung (siehe Gl. 2-26 [3]) und zum anderen durch eine Anpassung der atmosphärischen Dämpfungsraten (siehe Anlage D [3]).

Während die Impedanzanpassung eine einfach zu berechnende Konstante ist und für die Vorgaben des Testflugplatzes (10 °C; 1013,25 hPa) einen Wert von 0,11 dB ergibt, gestaltet sich die Anpassung der atmosphärischen Dämpfungsraten deutlich aufwendiger bzw. komplizierter; ein Umstand, der wesentlich durch die akustische Modellbildung bedingt ist.

Die Anpassung erfolgt grob in drei Schritten und soll nachfolgend für die NPD-Daten der A320 beim Start (siehe Kapitel 2.2.1) exemplarisch verdeutlicht werden.

Im ersten Schritt (siehe Gl. D-1 [3]) wird das Referenzspektrum DEP_103 um die dem Spektrum zugrundeliegende atmosphärische Dämpfung nach SAE AIR-1845 berichtigt. Es ist für das weitere Vorgehen auf die Unterscheidung zwischen der Nominalfrequenz n und der exakten Mittenfrequenz m, zu achten.

Tabelle 25: Berichtigtes Referenzspektrum DEP_103

Band Nr	/Hz	L _{n,ref} (d _{ref}) DEP_103 /dB	AIR 1845 /(dB/m)	L _n (d _{ref} =304,8m) DEP_103 /dB
17	50	56,7	0,00033	56,8
18	63	66,1	0,00033	66,2
19	80	70,1	0,00033	70,2
20	100	72,8	0,00066	73,0
21	125	76,6	0,00066	76,8
22	160	73,0	0,00098	73,3
23	200	74,5	0,00131	74,9
24	250	77,0	0,00131	77,4
25	315	75,3	0,00197	75,9
26	400	72,2	0,00230	72,9
27	500	72,2	0,00295	73,1
28	630	71,2	0,00361	72,3
29	800	70,2	0,00459	71,6
30	1000	70,0	0,00590	71,8
31	1250	69,6	0,00754	71,9
32	1600	71,1	0,00983	74,1
33	2000	70,6	0,01311	74,6
34	2500	67,1	0,01705	72,3
35	3150	63,4	0,02295	70,4
36	4000	63,5	0,03115	73,0
37	5000	58,2	0,03607	69,2
38	6300	51,5	0,05246	67,5
39	8000	42,3	0,07213	64,3
40	10000	37,7	0,09836	67,7

Der zweite Schritt (siehe Gl. D-2 und D-3 [3]) unterteilt sich seinerseits in zwei getrennte Berechnungsschritte. Im ersten Teilschritt wird das berichtigte Spektrum $L_n(dref)$ unter Verwendung der Dämpfungskoeffizienten n,ref an jeder der zehn tabellierten Entfernungen i (200 ft bis 25000 ft) der NPD-Daten angepasst.

Tabelle 26: Anpassung der Dämpfungskoeffizienten

		Ln(dref)										L _{n,ref} (d _i)
Band Nr.	/Hz	DEP_103 /dB	200 ft	400 ft	630 ft	1000 ft	2000 ft	4000 ft	6300 ft	10000 ft	16000 ft	25000 ft
17	50	56,8	70,8	64,7	60,8	56,7	50,6	44,4	40,2	35,8	31,1	26,3
18	63	66,2	80,2	74,1	70,2	66,1	60,0	53,8	49,6	45,2	40,5	35,7
19	80	70,2	84,2	78,1	74,2	70,1	64,0	57,8	53,6	49,2	44,5	39,7
20	100	73,0	86,9	80,9	76,9	72,8	66,6	60,2	55,7	51,0	45,7	40,0
21	125	76,8	90,7	84,7	80,7	76,6	70,4	64,0	59,5	54,8	49,5	43,8
22	160	73,3	87,2	81,1	77,1	73,0	66,7	60,1	55,4	50,3	44,4	37,9
23	200	74,9	88,8	82,7	78,7	74,5	68,1	61,3	56,4	50,9	44,4	37,0
24	250	77,4	91,3	85,2	81,2	77,0	70,6	63,8	58,9	53,4	46,9	39,5
25	315	75,9	89,8	83,6	79,5	75,3	68,7	61,5	56,1	49,9	42,2	32,9
26	400	72,9	86,7	80,6	76,5	72,2	65,5	58,1	52,5	45,9	37,6	27,4
27	500	73,1	86,9	80,7	76,5	72,2	65,3	57,5	51,4	44,1	34,6	22,7
28	630	72,3	86,1	79,8	75,6	71,2	64,1	55,9	49,4	41,3	30,6	16,8
29	800	71,6	85,3	79,0	74,7	70,2	62,8	54,0	46,8	37,6	25,1	8,7
30	1000	71,8	85,4	79,0	74,7	70,0	62,2	52,6	44,5	33,8	18,9	-1,1
31	1250	71,9	85,4	78,9	74,5	69,6	61,3	50,7	41,4	28,9	11,0	-13,5
32	1600	74,1	87,5	80,9	76,2	71,1	62,1	50,1	39,2	24,1	2,1	-28,8
33	2000	74,6	87,8	81,0	76,1	70,6	60,6	46,6	33,4	14,6	-13,4	-53,3
34	2500	72,3	85,2	78,2	73,0	67,1	55,9	39,5	23,6	0,3	-34,9	-85,6
35	3150	70,4	83,0	75,6	70,0	63,4	50,4	30,4	10,3	-19,6	-65,6	-132,4
36	4000	73,0	85,1	77,2	71,0	63,5	48,0	23,0	-2,8	-42,0	-103,0	-192,3
37	5000	69,2	81,0	72,8	66,3	58,2	41,2	13,2	-16,1	-60,7	-130,8	-233,6
38	6300	67,5	78,3	69,1	61,4	51,5	29,5	-8,5	-49,2	-112,4	-212,4	-360,2
39	8000	64,3	73,9	63,4	54,4	42,3	14,3	-35,7	-90,2	-175,6	-311,6	-513,3
40	10000	67,7	75,7	63,6	52,8	37,7	1,7	-64,3	-137,2	-252,1	-436,1	-709,8

Im zweiten Teilschritt wird diesmal das berichtigte Spektrum $L_n(d_{ref})$ anhand der für die festlegten meteorologischen Umgebungsbedingungen (T = 10°C; RH = 75 %) nach SAE ARP-5534 berechneten Dämpfungskoeffizienten $n_{0.0000}$ wieder an jeder der zehn tabellierten Entfernungen i_0 der NPD-Daten angepasst.

Tabelle 27: Anpassung der meteorologischen Umgebungsbedingungen

	H 2	(T=10°C, /(dB/m)	/Hz	L _n (dref)							L _{n,5534} (T=10°C, RH=75%,				
Band Nr.	`	(T=10°C, RH=75%) /(dB/m)		DEP_103 /dB	200 ft	400 ft	630 ft	1000 ft	2000 ft	4000 ft	6300 ft	10000 ft	16000 ft	25000 ft	
17	50,1	0,00007	50	56,8	70,8	64,8	60,8	56,8	50,7	44,7	40,7	36,6	32,4	28,3	
18	63,1	0,00011	63	66,2	80,2	74,1	70,2	66,2	60,1	54,0	50,0	45,9	41,6	37,4	
19	79,4	0,00018	80	70,2	84,2	78,1	74,2	70,1	64,1	57,9	53,9	49,7	45,3	40,9	
20	100	0,00027	100	73,0	87,0	80,9	77,0	72,9	66,8	60,6	56,5	52,2	47,6	43,0	
21	125,9	0,00039	125	76,8	90,8	84,7	80,7	76,7	70,5	64,3	60,1	55,6	50,8	45,8	
22	158,5	0,00057	160	73,3	87,2	81,2	77,2	73,1	66,9	60,6	56,2	51,6	46,5	41,0	
23	199,5	0,00078	200	74,9	88,8	82,8	78,8	74,7	68,4	61,9	57,4	52,5	47,0	41,0	
24	251,2	0,00103	250	77,4	91,3	85,2	81,2	77,1	70,7	64,1	59,4	54,2	48,3	41,6	
25	316,2	0,00131	315	75,9	89,8	83,7	79,7	75,5	69,1	62,3	57,4	51,9	45,4	37,9	
26	398,1	0,00162	400	72,9	86,8	80,7	76,6	72,4	65,9	58,9	53,8	48,0	40,9	32,6	
27	501,2	0,00195	500	73,1	87,0	80,8	76,7	72,5	65,9	58,7	53,4	47,2	39,5	30,3	
28	631	0,00234	630	72,3	86,1	80,0	75,9	71,6	64,9	57,4	51,8	45,2	36,8	26,5	
29	794,3	0,00286	800	71,6	85,4	79,2	75,1	70,7	63,8	56,1	50,1	42,9	33,6	21,9	
30	1000	0,00360	1000	71,8	85,6	79,3	75,1	70,7	63,6	55,4	48,9	40,8	30,2	16,4	
31	1258,9	0,00472	1250	71,9	85,6	79,3	75,0	70,5	63,0	54,1	46,8	37,5	24,8	8,0	
32	1584,9	0,00645	1600	74,1	87,7	81,3	76,9	72,1	64,1	54,2	45,7	34,4	18,5	-3,0	
33	1995,3	0,00917	2000	74,6	88,0	81,4	76,8	71,8	63,0	51,4	41,0	26,7	5,8	-23,2	
34	2511,9	0,01343	2500	72,3	85,5	78,6	73,7	68,2	58,1	43,9	30,5	11,4	-17,3	-58,0	
35	3162,3	0,02012	3150	70,4	83,1	75,9	70,5	64,3	52,1	33,8	15,8	-10,9	-51,8	-110,9)
36	3981,1	0,03058	4000	73,0	85,1	77,2	71,1	63,7	48,3	23,7	-1,7	-40,2	-100,2	-188,0)

Band Nr.	zH/ ,	(T=10°C, RH=75%) /(dB/m)	ZH/	DEP_103 /dB T _u (dref)	200 ft	400 ft	630 ft	1000 ft	2000 ft	4000 ft	Fu,55	34(T=10° ₩ 0000	°C, RH=7 10000 10000	75%,) 22000 tf
37	5011,9	0,04684	5000	69,2	80,3	71,4	64,2	54,9	34,6	0,0	-36,7	-93,6	-183,3	-315,7
38	6309,6	0,07184	6300	67,5	77,1	66,7	57,7	45,6	17,7	-32,1	-86,5	-171,5	-307,0	-507,9
39	7943,3	0,10964	8000	64,3	71,6	58,9	47,2	30,9	-8,6	-81,4	-162,2	-289,9	-494,5	-799,2
40	10000	0,16542	10000	67,7	71,6	55,5	39,9	17,3	-39,2	-146,0	-266,0	-456,5	-763,1	-1 220,8

Im dritten und letzten Schritt (siehe Gl. D-4 [3]) werden zur Bestimmung der entfernungsabhängigen einzahligen Korrekturwerte die Differenzen $\Delta L_{(T=10^{\circ}C, RH=75\%, di)}$ der A-gewichteten und über die 24 Terzen summierten Schalldruckpegel der im zweiten Schritt ermittelten Kenngrößen gebildet. Diese Differenz wird zum NPD-Datenwert addiert, um so die angepassten NPD-Daten zu erhalten.

Tabelle 28: Entfernungsabhängige Pegeldifferenz für vorgegebene Umgebungsbedingungen

T=10°, RH=75% DEP_103	200 ft	400 ft	630 ft	1000 ft	2000 ft	4000 ft	6300 ft	10000 ft	16000 ft	25000 ft
L _{A,5534} /dB	97,1	90,5	86,0	81,3	73,7	65,4	59,6	53,2	46,2	38,9
L _{A,ref} /dB	97,0	90,3	85,6	80,6	72,5	63,6	57,4	50,7	43,3	35,3
ΔL _{T,RH,di} /dB	0,1	0,2	0,4	0,7	1,2	1,8	2,1	2,5	2,9	3,6

Tabelle 29: Neuberechnete NPD-Daten

NPD_ID DEP_103	Vorgang	Beurteilungs-größe	Schubeinstellung	200 ft	400 ft	630 ft	1000 ft	2000 ft	4000 ft	6300 ft	10000 ft	16000 ft	25000 ft
V2527A	S	SEL	10000,0	95,1	90,4	87,2	84,2	79,3	73,6	69,3	64,4	58,8	53,0
V2527A	S	SEL	14000,0	98,4	94,1	91,3	88,3	83,3	77,6	73,2	68,1	62,3	56,4
V2527A	S	SEL	19000,0	102,6	98,6	95,9	93,0	88,4	82,9	78,8	74,0	68,6	63,0
V2527A	S	SEL	23000,0	104,7	100,9	98,4	95,7	91,2	86,1	82,1	77,6	72,4	66,9

3 Koordinaten der Immissionspunkte

Nachstehend erfolgt die Auflistung der zu den Berechnungen verwendeten Immissionspunkte mit ihren Koordinaten relativ zum Flugplatzbezugspunkt ARP (airport reference point).

Tabelle 30: Koordinaten der Immissionspunkte relativ zum Flugplatzbezugspunkt (ARP)

Bezeichnung des Immissionspunktes (IP)	Beschreibung	Relevant für	Х /m	Y /m	Z /m
IP01	Takeoff, 6.5 km from SOR	DC, DS	6500	0	0
IP02	SOR, to the side	AC, AS, DC, DS	0	200	0
IP03	SOR, behind	AC, AS, DC, DS	-500	0	0
IP04	SOR, behind and to the side	AC, AS, DC, DS	-500	500	0
IP05	Sideline, at runway end	AC, AS, DC, DS	3000	500	0
IP06	Departure curve, beneath	DC, CI	8200	-1800	0
IP07	Departure curve, outside	DC, CI	9600	-400	0
IP08	Departure curve, inside	DC, CI	6700	-3300	0
IP09	Departure curve end, beneath	DC	10000	-10000	0
IP10	Departure curve end, outside	DC	12000	-10000	0
IP11	Departure curve end, inside	DC	8000	-10000	0
IP12	Arrival curve, beneath	AC	-23000	-1800	0
IP13	Arrival curve, outside	AC, AS	-24400	-500	0
IP14	Arrival curve, inside	AC	-21500	-3300	0
IP15	Arrival curve end, beneath	AC	-24800	-10000	0
IP16	Arrival curve end, outside	AC	-26800	-10000	0
IP17	Arrival curve end, inside	AC	-22800	-10000	0
IP18	Approach, 2.0km from threshold	AC, AS	-2000	0	0

Bezeichnung des Immissionspunktes (IP)	Beschreibung	Relevant für	X /m	Y /m	Z /m
IP19	Ciruit center curve	CI	-4700	-3000	0
IP20	Circuit beneath level flight	CI	1500	-6000	0

4 Referenzergebnisse

In diesem Kapitel werden die Referenzergebnisse für den Testflugplatz dargelegt.

Es werden die relevanten Szenarien, die Ereignispegel und Beispiele für Zwischenergebnisse angegeben.

4.1 Relevante Szenarien

4.1.1 Einzelszenarien

Für folgende Kombinationen aus Flugroute, und Immissionspunkt sind je Luftfahrzeuggruppe gem. Kapitel 2.1 bis 2.4 die Belastungen L_{pAE} zu berechnen:

Tabelle 31: Immissionspunkte der Flugrouten

Kombination zur Berechnung des Ereignispegels									
Immissons- punkte	Flugroute								
(IP)	AC	AS	DC	DS	CI				
IP01			✓	✓					
IP02	✓	✓	✓	✓					
IP03	✓	✓	✓	✓					
IP04	✓	✓	✓	✓					
IP05	✓	✓	✓	✓					
IP06			✓		✓				
IP07			✓		✓				

Kombination zur Berechnung des Ereignispegels									
Immissons- punkte	Flugro								
(IP)	AC	AS	DC	DS	CI				
IP08			✓		✓				
IP09			✓						
IP10			✓						
IP11			✓						
IP12	✓								
IP13	✓	✓							
IP14	✓								
IP15	✓								
IP16	✓								
IP17	✓								
IP18	✓	✓							
IP19					✓				
IP20					✓				

4.1.2 Gesamtszenarium

Es ist die Überlagerung aller Routen mit allen Luftfahrzeugtypen aus Kapitel 2 für alle 20 Immissionspunkte zu berechnen.

4.2 Ereignispegel

4.2.1 Ereignispegel je Luftfahrzeugtyp

Als Einzelereignispegel L_{pAE} ergeben sich je Route und Flugzeugtyp an den Immissionspunkten die folgenden Ergebnisse:

Tabelle 32: Einzelereignispegel L_{pAE}/dB, Luftfahrzeugtyp A320

	A320 Pegelwerte L _{pAE}										
Immisions-			Flugroute								
punkte	AC	AS	DC	DS	CI						
IP01			85,38	89,50							
IP02	83,97	83,97	98,38	98,38							
IP03	97,10	97,10	72,64	72,57							
IP04	75,48	75,48	79,89	79,90							
IP05	56,20	56,21	89,04	89,08							
IP06			82,88		70,19						
IP07			70,11		81,51						
IP08			71,77		65,32						
IP09			76,71								
IP10			70,76								
IP11			70,75								
IP12	72,40										
IP13	65,30	71,65									
IP14	66,42										
IP15	71,65										
IP16	65,09										
IP17	65,08										
IP18	90,98	90,98									
IP19					70,82						
IP20					76,05						

Tabelle 33: Einzelereignispegel L_{pAE}/dB, Luftfahrzeugtyp CRJ9

		CRJ9 Pege	werte L _{pAE}							
Immisions-	Flugroute									
punkte	AC	AS	DC	DS	CI					
IP01			79,40	84,03						
IP02	81,42	81,42	92,87	92,87						
IP03	95,98	95,98	67,23	67,21						
IP04	73,48	73,48	74,59	74,59						
IP05	53,38	53,39	82,99	83,02						
IP06			81,07		67,96					
IP07			67,86		80,49					
IP08			69,66		63,62					
IP09			74,94							
IP10			67,82							
IP11			67,81							
IP12	74,56									
IP13	65,69	73,11								
IP14	66,29									
IP15	71,81									
IP16	63,20									
IP17	63,16									
IP18	90,20	90,20								
IP19					69,44					
IP20					77,54					

Tabelle 34: Einzelereignispegel L_{pAE}/dB, Luftfahrzeugtyp DH8C

DH8C Pegelwerte L _{pAE}										
Immisions-			Flugroute							
punkte	AC	AS	DC	DS	CI					
IP01			67,25	69,50						
IP02	68,32	68,32	86,79	86,79						
IP03	84,72	84,72	65,58	65,58						
IP04	57,94	57,93	69,82	69,82						
IP05	36,34	33,78	76,09	76,11						
IP06			68,05		54,50					
IP07			60,16		62,19					
IP08			62,56		54,81					
IP09			58,53							
IP10			54,42							
IP11			54,66							
IP12	46,00									
IP13	39,55	45,29								
IP14	42,70									
IP15	62,07									
IP16	56,76									
IP17	56,77									
IP18	75,69	75,69								
IP19					62,04					
IP20					56,74					

4.2.2 Gesamtpegel, Maximalpegelhäufigkeit

Die Berechnung der kumulativen Pegel ist in Kap. 2.25 aus [3] beschrieben.

Hier werden die Gesamtpegel LDEN und LN aus den Einzelereignispegeln gem. Kapitel 4.2.1 mit den Flugbewegungszahlen aus Anhang A.4 Flugbetrieb in der Luft gebildet. Ebenso wird die Anzahl von Fluglärmereignissen deren Maximalpegel über einem Schwellenpegel L_T = 68 dB (Nacht) liegen bzw. diesen erreichen (NAT-Kriterium) ermittelt. Die Berechnungen ergeben die folgenden Ergebnisse:

Tabelle 35: Gesamtpegel L_{DEN}, L_N und NAT_{68,NACHT}

Immisions- LÄRMINDEX						
punkte	LDEN	LN	NATn			
IP01	66,09	60,20	63,64			
IP02	76,80	70,90	141,18			
IP03	76,31	69,98	109,90			
IP04	60,03	53,64	28,59			
IP05	67,20	61,33	70,06			
IP06	59,32	53,39	30,76			
IP07	57,65	51,58	22,61			
IP08	48,77	42,76	0,00			
IP09	52,77	46,86	3,54			
IP10	46,50	40,61	0,00			
IP11	46,50	40,61	0,00			
IP12	51,05	44,75	0,08			
IP13	49,81	43,51	0,02			
IP14	43,81	37,51	0,00			
IP15	48,61	42,31	0,07			
IP16	41,31	35,00	0,00			
IP17	41,29	34,98	0,00			
IP18	70,27	63,91	96,66			
IP19	39,88	32,64	0,00			
IP20	40,92	30,03	0,00			

4.3 Beispiel für Zwischenergebnisse

4.3.1 Allgemein

Ausgangspunkt für alle Berechnungen der akustischen Belastungen in der Umgebung von Flugplätzen ist die Konstruktion von Flugbahnsegmenten. Dazu muss jede Flugbahn in einer festlegten Abfolge von Schritten durch eine definierte Anzahl von Knoten (Segmentierung) definiert werden. Die Knoten dienen der Festlegung der Flugbahnsegmente, die immer durch ihre Geometrie, die zugehörige Geschwindigkeit und den jeweiligen Schub gekennzeichnet sind.

Die Konstruktion von Flugbahnsegmenten erfolgt in mehreren Schritten (siehe Kapitel 2.13 "Konstruktion von Flugbahnsegmenten" aus [3]):

Zunächst erfolgt eine Teilsegmentierung des Fixpunktprofils aufgrund großer Geschwindigkeitsänderungen am Boden. Diese Korrektur erfolgt für Start ("Teilsegmentierung der Startrollstrecke (Segmentierung des Startlaufes)", Kapitel 2.13 aus [3]) und Landung ("Das Landerollen", Kapitel 2.13 aus [3]). Anschließend erhebliche Höhenänderungen ("Teilsegmentierung werden Anfangssteigflugsegmente und der Endanflugsegmente", Kapitel 2.13 aus [3]) sowie große Geschwindigkeitsänderungen in der Luft ("Teilsegmentierung der Flugsegmente", Kapitel 2.13 aus [3]) innerhalb des Profils korrigiert. Im nächsten Schritt werden die Flugstreckensegmente aus der Streckengeometrie erzeugt ("Flugstrecke", Kapitel 2.13 aus [3]) und anschließend mit den Fixpunktprofilen zu Flugbahnsegmenten vereinigt ("Flugprofile", Kapitel 2.13 aus [3]). Die Anfangs- bzw. Endpunkte der Fixpunktprofilsegmente werden mit dem Index "j" durchnummeriert. (Bei der Verwendung von prozeduralen Profilen ist zu beachten, dass das Flugprofil für eine gegebene Menge von Verfahrensschritten von der Flugstrecke abhängig ist. Beispielsweise ist die Steigrate des Luftfahrzeugs bei gleichem Schub und gleicher Geschwindigkeit in Kurven geringer als im Geradeausflug). Abschließend werden diejenigen Flugbahnpunkte entfernt, die zu nahe beieinanderliegen ("Teilsegmentierung der Flugsegmente", Kapitel 2.13 aus [3]).

Anmerkung: Handelt es sich bei der Flugstrecke um eine Platzrunde, so muss das zugrundeliegende Fixpunktprofil vor der Segmentierung aus den Fixpunktprofilen von Start und Landung zusammengesetzt werden ("Platzrunden", Kapitel 2.13 aus [3]).

Nachfolgend wird in diesem Kapitel die Bildung der Flugbahnteilsegmente für den Start der A320 bezüglich der Route DS (CASE_ID: A320 DS) detailliert erläutert.

Anmerkung: Im Anhang B sind für die Kombinationen von Routen (AC, AS, DC, DS, CI) und jeweiligem Flugzeugtyp (A320, CRJ9, DH8C) die immissionspunktunabhängigen Zwischenergebnisse in den Tabellen angegeben. In Anhang C werden die sich daraus ergebenden akustischen Parameter an den jeweiligen Immissionspunkten in ausführlicher Tabellenform zum Nachvollziehen der Berechnungsschritte aufgelistet.

4.3.2 Flugbahnsegmentbildung

Ausgangspunkt für die Segmentierung ist das zugrundeliegende Fixpunktprofil. Auf der Flugstrecke DS fliegt nur die A320. In der Anlage F zu [3] in Tabelle 5 finden sich die Informationen zum Fixpunkt-Profil des hier betrachteten Flugzeugtyps A320 (ACFT_ID: A320-232) unter dem Vorgang "S" ("S" steht in diesem Fall für "Start").

Tabelle 36: Fixpunktprofil A320, Start

ACFT_ID	Vorgang	Teilstrecken- länge	Schritt	Entfernung s' /m	Höhe /m	TAS /(m/s)	Schub /N pro Triebwerk
A320-232	S	1	1	0	0	0	110076,04
A320-232	S	1	2	1812,25	0	83,69	91647,06
A320-232	S	1	3	3684,54	304,8	84,93	93041,17
A320-232	S	1	4	5921,41	413,31	109,72	88301,13
A320-232	S	1	5	6829,78	455,8	118,05	86754,18
A320-232	S	1	6	7134,58	487,56	118,26	67774,02
A320-232	S	1	7	11232,95	914,4	120,73	70274,67
A320-232	S	1	8	13431,99	992,76	133,74	70245,53
A320-232	S	1	9	20364,82	1676,4	138,32	73361,45
A320-232	S	1	10	26970,56	2286	142,59	75596,8
A320-232	S	1	11	35998,65	3048	148,25	77670,82

Anmerkung: Die Dokumentation der Zwischenergebnisse in den Tabellen erfolgt im Streckenkoordinatensystem s'.

Auf dieses Startprofil werden jetzt die Teilsegmentierungsschritte bezüglich der Geschwindigkeit und der Höhe angewandt.

Dies bedeutet im Einzelnen:

1. Startrollstrecke:

Die Anwendung der in "Teilsegmentierung der Startrollstrecke (Segmentierung des Startlaufes)", Kapitel 2.13 aus [3] aufgeführten Gleichungen (2-10) – (2-14) [3] führt auf eine zusätzliche Unterteilung der "bisherigen" Segmentknoten "1" und "2".

2. Anfangssteigflug:

Die Segmentierung des Anfangssteigflugsegments erfolgt nunmehr auf Grundlage der Vorgehensweise, die in "Teilsegmentierung der Anfangssteigflugsegmente und der Endanflugsegmente", Kapitel 2.13 aus [3] beschrieben ist. Die beschriebene Vorgehensweise mit Anwendung von Gleichung (2-15 [3]) führt auf die in der untenstehenden Tabelle genannten Zusatzknoten "Höhenkriterium" im Anfangssteigflugsegment. Deutlich wird, wie die Knoten aus der Beschreibung des Fixpunktprofils und der Beschreibung der Anfangssteigflugsegmentierung ineinandergreifen und zu den entsprechenden Knotenpunkten bei der Segmentierung führen.

3. Weitere Flugbahnteilsegmente:

Nach Modellierung des Startrollvorganges und des Anfangssteigflugs verbleibt nun noch die Segmentierung der weiteren Flugstrecke bis zum Ende der vorgegebenen Flugroute DS. Dies erfolgt gemäß "Teilsegmentierung der Flugsegmente", Kapitel 2.13 aus [3] durch Anwendung der Gleichung (2-16 [3]). Berücksichtigt wird dabei die Änderung der Geschwindigkeit (und damit der Schubwerte). Damit ergeben sich weitere Segmente – in der Tabelle mit "Geschwindigkeitskriterium (Luft)" bezeichnet.

Damit ergibt sich die folgende Liste von Teilsegment-Knoten.

Tabelle 37: Teilsegment-Knoten

Profilsegment- knoten Nr.	Teilsegment- knoten Nr.	s' /m	x /m	y /m	z (abs) /m	V /(m/s)	Schub	Quelle
1	1	0	0	0	2	0	110076,04	Fixpunktprofil
	2	22,37	22,37	0	2	9,3	108028,38	Geschwindigkeits- kriterium (Boden)
	3	89,49	89,49	0	2	18,6	105980,71	Geschwindigkeits- kriterium (Boden)
	4	201,36	201,36	0	2	27,9	103933,05	Geschwindigkeits- kriterium (Boden)
	5	357,98	357,98	0	2	37,19	101885,39	Geschwindigkeits- kriterium (Boden)
	6	559,34	559,34	0	2	46,49	99837,72	Geschwindigkeits- kriterium (Boden)
	7	805,44	805,44	0	2	55,79	97790,05	Geschwindigkeits- kriterium (Boden)
	8	1096,3	1096,3	0	2	65,09	95742,4	Geschwindigkeits- kriterium (Boden)
	9	1431,9	1431,9	0	2	74,39	93694,73	Geschwindigkeits- kriterium (Boden)
2	10	1812,25	1812,25	0	2	83,69	91647,06	Fixpunktprofil
	11	1917,87	1917,87	0	17,2	83,76	91726,28	Höhenkriterium
	12	2043,94	2043,94	0	37,72	83,84	91820,73	Höhenkriterium
	13	2193,86	2193,86	0	62,12	83,94	91932,93	Höhenkriterium
	14	2382,97	2382,97	0	92,91	84,07	92074,26	Höhenkriterium
	15	2636,81	2636,81	0	134,23	84,24	92263,63	Höhenkriterium
	16	3013,31	3013,31	0	195,53	84,49	92543,79	Höhenkriterium
3	17	3684,54	3684,54	0	304,8	84,93	93041,17	Fixpunktprofil
	18	4366,85	4366,85	0	337,9	93,19	91461,16	Geschwindigkeits- kriterium (Luft)

Profilsegment- knoten Nr.	Teilsegment- knoten Nr.	s' /m	x/m	y /m	z (abs) /m	V /(m/s)	Schub	Quelle
	19	5112,47	5112,47	0	374,07	101,46	89881,15	Geschwindigkeits- kriterium (Luft)
4	20	5921,41	5921,41	0	413,31	109,72	88301,13	Fixpunktprofil
5	21	6829,78	6829,78	0	455,8	118,05	86754,18	Fixpunktprofil
6	22	7134,58	7134,58	0	487,56	118,26	67774,02	Fixpunktprofil
	23	7277,66	7277,66	0	502,46	118,35	67862,88	Höhenkriterium
7	24	11232,95	11232,95	0	914,4	120,73	70274,67	Fixpunktprofil
	25	12304,37	12304,37	0	952,58	127,23	70260,1	Geschwindigkeits- kriterium (Luft)
8	26	13431,99	13431,99	0	992,76	133,74	70245,53	Fixpunktprofil
	27	16442,34	16442,34	0	1289,61	135,75	71615,17	Höhenkriterium
9	28	20364,82	20364,82	0	1676,4	138,32	73361,45	Fixpunktprofil
10	29	26970,56	26970,56	0	2286	142,59	75596,8	Fixpunktprofil
11	30	35998,65	35998,65	0	3048	148,25	77670,82	Fixpunktprofil

Die Flugstrecke DS ist gemäß Anhang A.4.1 einfach und besteht nur aus einem geraden Abschnitt. Eine weitere Unterteilung in Teilabschnitte ist deshalb nicht erforderlich.

Tabelle 38: Streckengeometrie der Flugstrecke DS

1	2	3	4	5	6	7
Abschnitt Nr.	Gerade			Kurve	Ко	rridorbreite am
	Länge /m	L/R	Kursänderung /°	Radius /m	Anfang Abschnitt /m	Ende Abschnitt /m
1	100000				0	0

Die jetzt folgende Verknüpfung des Fixpunktprofils mit der Streckengeometrie führt somit zu zwei weiteren Segmentknoten.

Tabelle 39: Ergänzung der Teilsegmentknoten

Profilsegment-knoten Nr.	Teilsegment- knoten Nr.	s' /m	x /m	y/m	z (abs) /m	V / (m/s)	Schub	Quelle
	1	0	0	0	2	0	110076,04	DES
1	2	0	0	0	2	0	110076,04	Fixpunktprofil
	3	22,37	22,37	0	2	9,3	108028,38	Geschwindigkeits- kriterium (Boden)

10	30	26970,56	26970,56	0	2286	142,59	75596,8	Fixpunktprofil
11	31	35998,65	35998,65	0	3048	148,25	77670,82	Fixpunktprofil
	32	101500	101500	0	8576,53	148,25	77670,82	DES

Abschließend führt die Anwendung des in "Teilsegmentierung der Flugsegmente", Kapitel 2.13 aus [3] beschriebenen Abstandskriteriums dazu, dass der Doppelpunkt am Anfang der Knotenliste gelöscht wird und somit die immissionspunktunabhängige Segmentierung einer Flugroute (hier DS) für einen Flugzeugtyp (hier A320) – ggf. eine Flugzeugklasse – abgeschlossen ist. Es folgt die Zuordnung der akustischen Parameter zu den jeweiligen Segmenten (abhängig vom betrachteten Immissionspunkt), die beispielhaft im folgenden Kapitel beschrieben wird.

4.3.3 Akustische Teilergebnisse

Für den Immissionspunkt IP05 sind im Anhang C die akustischen Teilergebnisse für den Start der A320 (CASE_ID: A320 DS) aufgelistet. Nachfolgend wird die Bildung der akustischen Teilergebnisse näher erläutert. Die zitierten Gleichungen beziehen sich jeweils auf [3], sofern nicht anders angegeben.

- 1. Basispegel und zugehörige atmosphärische Korrektur (Kap. 2.16 aus [3])
 - a) NPD-Maximalpegel ("Lmax_noise_fraction")
 NPD-Schallexpositionspegel ("baseline_SEL")
 aus den Basispegeln der ANP-Datenbank-Tabellen berechneter "eigentlicher" Basispegel für Maximal- und Schallexpositionspegel. Die Berechnung erfolgt in Abhängigkeit vom jeweiligen Schub und dem kürzesten Abstand zwischen Immissionsort und einer unendlichen Flugbahn aus den NPD-Kurven gemäß der Interpolationsgleichungen 2-22 und 2-23 (bzw. 2-24 und 2-25) aus [3]. Anmerkung: Die im Beispiel ausgegebenen Werte sind ohne Impedanzanpassung
 - b) akustische Impedanz ("acoustic_impedance adjustment")
 Berücksichtigung von atmosphärischen Bedingungen am Immissionsort (Gl. 2-26[3]). Der Wert ist ausschließlich von Luftdruck und Temperatur abhängig und daher für alle Segmente gleich. Für die im Beispiel vorliegenden Standardbedingungen (p₀=101,325 kPa, T=10° C) ungefähr 0,11 dB (0,112 dB).
- 2. Korrekturen bzgl. der Festlegungen bei der Berechnung der Basispegel (Kap. 2-19 [3])
 - a) Dauerkorrektur ("speed_corr")
 Berücksichtigung der Abweichung der äquivalenten Segmentgeschwindigkeit von der
 Referenzgeschwindigkeit (82,31 m/s, Gl. 2-35 [3]). Diese Korrektur hat beim Startrollen den
 größten Wert und nimmt mit zunehmender Geschwindigkeit ab. Da im Segment 10 (siehe
 Tabelle im Anhang B.4) das Luftfahrzeug die Referenzgeschwindigkeit überschreitet, ändert sich
 das Vorzeichen von "speed_corr", der additiven Dauerkorrektur (Gl. 2-37 [3]) und wird negativ.
 Anmerkung: gilt nur für Schallexpositionspegel L_{pAE}.
 - b) Korrektur aufgrund der Triebwerksanbringung ("engine_install_correction") Berücksichtigung von Installationseffekten (laterale Richtcharakteristik, Gl. 2-38 [3]). Der Wert wird bestimmt durch den Depressionswinkel ϕ , welcher sich zusammensetzt aus dem Höhenwinkel β (Winkel zwischen direktem Schallausbreitungsweg und der Grundebene) und dem Querneigungswinkel ϵ .
 - c) seitliche Dämpfung ("lateral_attenuation")
 Da sich die Basispegel der ANP-Datenbank auf Empfänger unterhalb des Luftfahrzeuges
 beziehen, muss ein etwaiger seitlicher Versatz des Immissionsortes zur Flugbahn berücksichtigt
 werden. Dieser Wert wird bestimmt durch den seitlichen Abstand des Immissionsortes und den
 jeweiligen Höhenwinkel (Gl. 2-42 [3]). Da es sich im Beispiel um eine gerade Flugbahn handelt,
 ist der seitliche Versatz immer gleich, d.h. der Wert wird ausschließlich vom Höhenwinkel
 bestimmt und nimmt daher stetig ab. Ab Segment 24 ist der Höhenwinkel größer als 50° und die
 Korrektur daher gleich 0.
 - d) Korrektur aufgrund des endlichen Segments ("noise_fraction")

 Die berechneten Basispegel beziehen sich auf eine unendliche Flugbahn. Da ein Segmentpegel

berechnet werden soll, muss bestimmt werden, welcher Anteil der am Immissionsort auftreffenden Lärmenergie von dem jeweiligen Segment verursacht wird (Gl. 2-48 bis 2-49 [3]). In Abhängigkeit von Segmentlänge und Entfernung vom Immissionsort nimmt der Betrag der Korrektur kontinuierlich ab und ist in der Nähe des Immissionsortes (Segment 15) am niedrigsten, um danach wieder anzusteigen. Anmerkung: gilt nur für Schallexpositionspegel L_{pAE}.

e) Richtwirkungsfunktion am Start-of-Roll-Punkt ("start_of_roll_correction")
Berücksichtigung der longitudinalen Richtcharakteristik hinter dem Beginn jedes StartrollSegments (Gl. 2-50 bis 2-55[3]). Die Richtwirkungsfunktion ist von Bedeutung für Immissionsorte
hinter den Startroll-Segmenten. Da sich IP 05 jedoch jenseits des letzten Startroll-Segments bzw.
jenseits des Abhebepunktes befindet (seitlich des gegenüberliegenden Endes der StartLandebahn), ist dieser Wert hier immer gleich 0.

3. Segmentpegel (Kap. 2-17 [3])

a) Segmentpegel ("segment_SEL")
 ergibt sich als Ergebnis der Summation von Schallexpositions-Basispegel und den zugehörigen
 Korrekturen (Gl. 2-29 [3]), im Beispiel für das 1. Segment (siehe Anhang C.2 CASE_ID: A320 DS,
 IP05, Eingangsdaten für NPD-Interpolation Segment 1):

(93,35 + 0,11) + 12,48 - 1,50 - 8,56 - 47,32 + 0,00 = 48,56 dB

Anmerkung: die positive "laterale attenuation" der Tabelle geht mit negativem Vorzeichen in die Summation.

4.3.4 Eingangsparameter für die Bestimmung der akustischen Korrekturwerte

Um die akustischen Teilergebnisse aus Kapitel 4.3.3 für den IP05 nachvollziehen zu können, sind im Anhang C für den Start der A320 (CASE_ID: A320 DS) alle relevanten Eingangsparameter für die Ermittlung der Belastung aufgeführt.

- 1. Geometrische Flugsegmentparameter (Kap. 2-18, Abb. 11 bis 13 [3])
 - a) "slant_distance" der senkrechte Abstand dp zwischen Immissionsort und dem verlängerten Segment in m
 - b) "distance_d1"

 Der Abstand d1 zwischen dem Startpunkt des Segments und dem Immissionspunkt in m
 - c) "distance_d2"Der Abstand d2 zwischen dem Endpunkt des Segments und dem Immissionspunkt in m

d) "distance q"

Der Abstand q zwischen dem Startpunkt des Segments (S1) und dem Punkt des kleinsten Vorbeiflugabstands (Sp)

e) "lateral displacement"

Der Abstand "slant_distance" in der xy-Ebene gemessen

- 2. Eingangsdaten für NPD-Interpolation (Kap. 2-18 [3])
 - a) "NPD interpolation distance"

NPD-Abstandsparameter d.

Für die Berechnung des Schallexpositionspegels bei Flugsegmenten ist d gleich dem Mindestschrägabstand dp. Bei Bodensegmenten, bei denen sich der Immissionsort hinter dem Segment befindet, ist d der kürzeste Anstand zwischen Immissionsort und Segment ds.

b) "NPD_interpolation_thrust"

Segmentleistung P nach Gleichung (2-34) aus den Segmentleistungen am Startpunkt (P1) und am Endpunkt (P2) interpoliert.

- 3. Geometrische Winkelbeziehungen (Kap. 2-19 bzw. Abbildung 14, 17, 18 aus [3])
 - a) "angle beta"

Höhenwinkel β nach Abbildung 17 [3]

b) "angle gamma"

Steigwinkel y nach Abbildung 18 [3]

c) "angle phi"

Depressionswinkel ϕ nach Abbildung 14 [3]. Ergibt sich als Summe aus dem Höhenwinkel β und dem Querneigungswinkel ϵ

d) "bank angle"

Querneigungswinkel &

Tabellenverzeichnis

Tabelle 1:	Datenblatt A320-S, allgemeine Daten	14
Tabelle 2:	Datenblatt A320-S, Terzspektrum, Spektralnummer 103	15
Tabelle 3:	Datenblatt A320-S, NPD-Tabelle, ID V2527A	16
Tabelle 4:	Datenblatt A320-S, Fixpunkt-Profil	16
Tabelle 5:	Datenblatt A320-L, allgemeine Daten	17
Tabelle 6:	Datenblatt A320-L, Terzspektrum, Spektralnummer 205	18
Tabelle 7:	Datenblatt A320-L, NPD-Tabelle, ID V2527A	19
Tabelle 8:	Datenblatt A320-L, Fixpunkt-Profil	20
Tabelle 9:	Datenblatt CRJ9-S, allgemeine Daten	21
Tabelle 10:	Datenblatt CRJ9-S, Terzspektrum, Spektralnummer 113	22
Tabelle 11:	Datenblatt CRJ9-S, NPD-Tabelle, ID CF348C5	23
Tabelle 12:	Datenblatt CRJ9-S, Fixpunkt-Profil	23
Tabelle 13:	Datenblatt CRJ9-L, allgemeine Daten	24
Tabelle 14:	Datenblatt CRJ9-L, Terzspektrum, Spektralnummer 216	25
Tabelle 15:	Datenblatt CRJ9-L, NPD-Tabelle, ID CF348C5	26
Tabelle 16:	Datenblatt CRJ9-L, Fixpunkt-Profil	27
Tabelle 17:	Datenblatt DH8C-S, allgemeine Daten	28
Tabelle 18:	Datenblatt DH8C-S, Terzspektrum, Spektralnummer 112	29
Tabelle 19:	Datenblatt DH8C-S, NPD-Tabelle, ID PW120	30
Tabelle 20:	Datenblatt DH8C-S, Fixpunkt-Profil	31
Tabelle 21:	Datenblatt DH8C-L, allgemeine Daten	32
Tabelle 22:	Datenblatt DH8C-L, Terzspektrum, Spektralnummer 213	33
Tabelle 23:	Datenblatt DH8C-L, NPD-Tabelle, ID PW120	34
Tabelle 24:	Datenblatt DH8C-L, Fixpunkt-Profil	34
Tabelle 25:	Berichtigtes Referenzspektrum DEP_103	36
Tabelle 26:	Anpassung der Dämpfungskoeffizienten	38
Tabelle 27:	Anpassung der meteorologischen Umgebungsbedingungen	40
Tabelle 28:	Entfernungsabhängige Pegeldifferenz für vorgegebene	
	Umgebungsbedingungen	42
Tabelle 29:	Neuberechnete NPD-Daten	42
Tabelle 30:	Koordinaten der Immissionspunkte relativ zum Flugplatzbezugspunkt	
(ARP)		43
Tabelle 31:	Immisiopnspunkte der Flugrouten	45
Tabelle 32:	Einzelereignispegel L _{pAE} /dB, Luftfahrzeugtyp A320	47
Tabelle 33:	Finzelereignispegel L _{pAE} /dB. Luftfahrzeugtvp CRI9	48

Tabelle 34:	Einzelereignispegel L _{pAE} /dB, Luftfahrzeugtyp DH8C	49
Tabelle 35:	Gesamtpegel L _{DEN} , L _N und NAT _{68,NACHT}	50
Tabelle 36:	Fixpunktprofil A320, Start	52
Tabelle 37:	Teilsegment-Knoten	54
Tabelle 38:	Streckengeometrie der Flugstrecke DS	55
Tabelle 39:	Ergänzung der Teilsegmentknoten	56

Abbildungsverzeichnis

Abbildung 1:	Streckendarstellung mit Immissionspunkten	11

A Anhang Datenblätter für Flugplätze

A.1 Allgemeines

A.1.1 Datum der DES-Erstellung

2021-04-01

A.1.2 Ist Jahr

2020

A.1.3 Meteorologische Umgebungsbedingungen

Lufttemperatur	/°C	10,0
Luftdruck	/kPa	101,325
Relative Feuchte	/%	75
Gegenwind	/(m/s)	0,51

A.2 Flugplatzdaten

A.2.1 Flugplatz

Name:					
Testflugplatz					
ICAO-Flugplatzcode:					
LOXX					

A.2.2 Flugplatzbezugspunkt

geographische Breite und Länge (WGS84)

N
E

UTM32/33 (ETRS89)

R: 0,00 m / H: 0,00 m

A.2.3 Flugplatzhöhe über NN /m

0,00

A.2.4 Start- und Landebahnen

		1	Ш	III	IV
1.	Bezeichnung	09 / 27	/	/	/
2.	Vorhanden/geplant für Jahr	vorhanden			
3.	rechtweisende Richtung /º	90,0/270,0			
	geographisch Nord (WGS84)	1	/	/	/
	Gitter-Nord UTM32/33 (ETRS89)	/	/	/	/
4.	Gesamtlänge /m	3000			
5.	Koordinaten des Bahn- bezugspunktes	1.500,00/0,00			
	geographische Koordinaten (WGS84)	N E	N E	N E	N E
	UTM-Koordinaten 32/33 (ETRS89)	R:/ H:			
6.	Rechts- und Hochwertdifferenz des Bahnbezugspunktes vom Flugplatzbezugspunkt /m	Δ R = 1.500,00 Δ H = 0,00	ΔR = ΔH =	ΔR = ΔH =	ΔR = ΔH =
7.	Abstand des Startpunktes vom Bahnbezugspunkt /m	-1500/-1500	/	/	/
8.	Abstand der Landeschwelle vom Bahnbezugspunkt /m	1500/1500	/	/	/
9.	Abstand des Bahnanfangs vom Bahnbezugspunkt /m	-1500/-1500	/	/	/
10.	Meridiankonvergenz	0,0			

A.3 Flugbewegungsangaben

A.3.1 Gesamtzahl der Flugbewegungen mit Flugzeugen in den 12 Monaten des Ist-Jahres

Luftfahrzeuggruppe	Tag (06:00 bis 19:00 Uhr)	Abend (19:00 bis 22:00 Uhr)	Nacht (22:00 bis 06:00 Uhr)	gesamt
A320	18500	8500	25000	52000
CRJ9	28800	12200	22000	63000
DH8C	51200	20800	23000	95000
insgesamt	98500	41500	70000	210000

A.4 Flugbetrieb in der Luft

A.4.1 Abflugstrecken mit Flugzeugen

A.4.1.1 Streckenbeschreibung

Bezeichnung

DC

Start- und Landebahn

09/27

Startrichtung

Beschreibung der Abflugstrecke (in Flugrichtung)

1	2	3	4	5	6	7
Abschnitt	Gerade			Kurve	Korrio	dorbreite am
Nr.	Länge /m	L/R	Kursänderung /°	Radius /m		nfang Ende bschnitts /m
1	2200				0	0
2		R	90	6300	0	0
3	100000				0	0

09

A.4.1.2 Flugbewegungsangaben

Bezeichnung

DC

Start- und Landebahn

09/27

Startrichtung

09

Flugbewegungszahlen

Luftfahrzeugtyp	Tag (06:00 bis 19:00 Uhr)	Abend (19:00 bis 22:00 Uhr)	Nacht (22:00 bis 06:00 Uhr)	gesamt
A320-S	3750	1250	7500	12500
CRJ9-S	7500	2500	5000	15000
DH8C-S	15000	5000	2500	22500
insgesamt	26250	8750	15000	50000

A.4.2 Abflugstrecken mit Flugzeugen

A.4.2.1 Streckenbeschreibung

Bezeichnung

DS

Start- und Landebahn

09/27

Startrichtung

09

Beschreibung der Abflugstrecke (in Flugrichtung)

1	2	3	4	5	6	7
Abschnitt	Gerade			Kurve	Korridorbreite am	
Nr.	Länge /m	L/R	Kursänderung /°	Radius /m	Anfang Ende des Abschnitts /m	
1	100000				0	0

A.4.2.2 Flugbewegungsangaben

Bezeichnung

DS

Start- und Landebahn

09/27

Startrichtung

09

Flugbewegungszahlen

Luftfahrzeugty	Tag (06:00 bis 19:00 Uhr)	Abend (19:00 bis 22:00 Uhr)	Nacht (22:00 bis 06:00 Uhr)	gesamt
A320	S 3750	1250	7500	12500
CRJ9	7500 rs	2500	5000	15000
DH8C	S 15000	5000	2500	22500
insgesan	nt 26250	8750	15000	50000

A.4.3 Anflugstrecken mit Flugzeugen

A.4.3.1 Streckenbeschreibung

Bezeichnung

AC

Start- und Landebahn

09/27

Landerichtung

09

Beschreibung der Anflugstrecke (entgegen der Flugrichtung)

7		6	5	4	3	2	1
1	orbreite an	Kurve Korridorb		Kurve		Gerade	Abschnitt
	fang Endo		Radius /m	Kursänderung /°	L/R	Länge /m	Nr.
)	(0				20000	1
)	(0	6300	90	L		2
)	(0				100.000	3

A.4.3.2 Streckenbeschreibung

Bezeichnung	
	AC
Start- und Landebahn	
	09/27
Landerichtung	
	09

Flugbewegungszahlen

Luftfahrze	ugtyp	Tag (06:00 bis 19:00 Uhr)	Abend (19:00 bis 22:00 Uhr)	Nacht (22:00 bis 06:00 Uhr)	gesamt
А	320-L	4500	3000	5000	12500
(CRJ9-L	5400	3600	6000	15000
DI	H8C-L	8100	5400	9000	22500
insge	esamt	18000	12000	20000	50000

A.4.4 Anflugstrecken mit Flugzeugen

A.4.4.1 Streckenbeschreibung

Bezeichnung

AS

Start- und Landebahn

09/27

Landerichtung

09

Beschreibung der Anflugstrecke (entgegen der Flugrichtung)

1	2	3	4	5	6	7	
Abschnitt	Gerade	Kurve Korridorbreite			orbreite am		
Nr.	Länge /m	L/R	Kursänderung /°	Radius /m	Anfang Ende des Abschnitts /m		
1	100000				0	0	

A.4.4.2 Flugbewegungsangaben

Bezeichnung

AS

Start- und Landebahn

09/27

Landerichtung

09

Flugbewegungszahlen

Luftfahrzeugtyp	Tag (06:00 bis 19:00 Uhr)	Abend (19:00 bis 22:00 Uhr)	Nacht (22:00 bis 06:00 Uhr)	gesamt
A320-L	4500	3000	5000	12500
CRJ9-L	5400	3600	6000	15000
DH8C-L	8100	5400	9000	22500
insgesamt	18000	12000	20000	50000

A.4.5 Platzrunden mit Flugzeugen

A.4.5.1 Streckenbeschreibung

Bezeichnung

CI

Start- und Landebahn

09/27

Startrichtung

27

Beschreibung der Platzrunde (entgegen der Flugrichtung)

1	2	3	4	5	6	7
Abschnitt	Gerade		Kurve			lorbreite am
Nr.	Länge /m	L/R	Kursänderung /°	Radius /m		nfang Ende bschnitts /m
1	6000,00				0	0
2		R	180	3000	0	0
3	12000,00				0	0
4		R	180	3000	0	0
5	6000,00				0	0

Flughöhe über Platz im Gegenanflug	/n	n
------------------------------------	----	---

A.4.5.2 Flugbewegungsangaben

Bezeichnung	
	CI
Start- und Landebahn	
	09/27

Flugbewegungszahlen

Luftfahrzeuggruppe	Tag (06:00 bis 19:00 Uhr)	Abend (19:00 bis 22:00 Uhr)	Nacht (22:00 bis 06:00 Uhr)	gesamt
A320	2000			2000
CRJ9	3000			3000
DH8C	5000			5000
insgesamt	10000			10000

B Anhang (normativ)

B.1 CASE_ID: A320 AC

case_ID	segment_ID	sigma /m	segment_start_x/m	segment_start_y/m	segment_start_z/m	segment_length/m	True Airspeed /(m/s)	NPD_interpolation _thrust /N
A320 AC	1	-1 248,05	1 248,05	0,00	2,00	67,86	15,28	11 787,73
A320 AC	2	-1 180,19	1 180,19	0,00	2,00	97,60	23,85	21 610,84
A320 AC	3	-1 082,58	1 082,58	0,00	2,00	127,34	32,42	31 433,95
A320 AC	4	-955,24	955,24	0,00	2,00	157,08	41,00	41 257,06
A320 AC	5	-798,16	798,16	0,00	2,00	186,82	49,57	51 080,16
A320 AC	6	-611,35	611,35	0,00	2,00	216,56	58,14	60 903,27
A320 AC	7	-394,79	394,79	0,00	2,00	94,79	66,72	70 726,38
A320 AC	8	-300,00	300,00	0,00	2,00	328,31	68,26	19 545,26
A320 AC	9	27,96	-27,96	0,00	17,19	391,97	68,32	19 588,05
A320 AC	10	419,38	-419,38	0,00	37,70	466,12	68,38	19 639,01
A320 AC	11	884,87	-884,87	0,00	62,10	587,95	68,46	19 699,44
A320 AC	12	1 472,01	-1 472,01	0,00	92,87	789,23	68,57	19 775,39
A320 AC	13	2 260,16	-2 260,16	0,00	134,17	1 170,60	68,70	19 876,89
A320 AC	14	3 429,16	-3 429,16	0,00	195,44	2 086,96	68,90	20 026,49
A320 AC	15	5 513,26	-5 513,26	0,00	304,66	4 772,46	69,26	20 290,47
A320 AC	16	10 279,18	-10 279,18	0,00	554,43	1 145,67	70,06	20 881,59
A320 AC	17	11 423,28	-11 423,28	0,00	614,39	305,22	73,76	14 576,08
A320 AC	18	11 728,08	-11 728,08	0,00	630,36	1 578,36	74,69	4,45
A320 AC	19	13 304,28	-13 304,28	0,00	712,97	1 747,06	83,12	4,45
A320 AC	20	15 048,94	-15 048,94	0,00	804,40	3 455,80	91,56	4,45
A320 AC	21	18 500,00	-18 500,00	0,00	985,26	1 099,67	95,00	4,45

case_ID	segment_ID	sigma /m	segment_start_x /m	segment_start_y /m	segment_start_z /m	segment_length /m	True Airspeed /(m/s)	NPD_interpolation _thrust /N
A320 AC	22	19 599,56	-19 593,98	-95,71	1 042,89	1 099,67	96,07	4,45
A320 AC	23	20 699,12	-20 654,73	-379,94	1 100,52	1 099,67	97,13	4,45
A320 AC	24	21 798,67	-21 650,00	-844,04	1 158,14	1 099,67	98,18	4,45
A320 AC	25	22 898,23	-22 549,56	-1 473,92	1 215,77	65,49	99,22	4,45
A320 AC	26	22 963,71	-22 595,81	-1 520,16	1 219,20	1 032,76	99,28	4,45
A320 AC	27	23 997,79	-23 326,08	-2 250,44	1 219,20	351,31	105,48	4,45
A320 AC	28	24 349,54	-23 527,58	-2 538,21	1 219,20	746,85	107,51	4,45
A320 AC	29	25 097,34	-23 955,96	-3 150,00	1 219,20	1 006,79	111,35	4,45
A320 AC	30	26 105,42	-24 381,45	-4 062,46	1 219,20	91,37	116,32	4,45
A320 AC	31	26 196,90	-24 420,06	-4 145,27	1 219,20	1 098,16	116,76	4,45
A320 AC	32	27 296,46	-24 704,29	-5 206,02	1 219,20	702,21	121,94	4,45
A320 AC	33	27 999,56	-24 765,49	-5 905,56	1 219,20	395,95	125,14	4,45
A320 AC	34	28 396,02	-24 800,00	-6 300,00	1 219,20	1 635,97	126,90	4,45
A320 AC	35	30 031,99	-24 800,00	-7 935,97	1 219,20	304,80	133,95	4,45
A320 AC	36	30 336,79	-24 800,00	-8 240,77	1 219,20	30 480,00	135,24	18 314,71
A320 AC	37	60 816,79	-24 800,00	-38 720,77	1 219,20	67 579,23	135,24	18 314,71
A320 AC	38	128 396,02	-24 800,00	-106 300,00	1 219,20		135,24	18 314,71

B.2 CASE_ID: A320 AS

Case_ID	segment_ID	sigma /m	segment_start_x/m	segment_start_y/m	segment_start_z/m	segment_length /m	True Airspeed /(m/s)	NPD_interpolation _thrust /N
A320 AS	1	-1 248,05	1 248,05	0,00	2,00	67,86	15,28	11 787,73
A320 AS	2	-1 180,19	1 180,19	0,00	2,00	97,60	23,85	21 610,84
A320 AS	3	-1 082,58	1 082,58	0,00	2,00	127,34	32,42	31 433,95
A320 AS	4	-955,24	955,24	0,00	2,00	157,08	41,00	41 257,06
A320 AS	5	-798,16	798,16	0,00	2,00	186,82	49,57	51 080,16
A320 AS	6	-611,35	611,35	0,00	2,00	216,56	58,14	60 903,27
A320 AS	7	-394,79	394,79	0,00	2,00	94,79	66,72	70 726,38
A320 AS	8	-300,00	300,00	0,00	2,00	328,31	68,26	19 545,26
A320 AS	9	27,96	-27,96	0,00	17,19	391,97	68,32	19 588,05
A320 AS	10	419,38	-419,38	0,00	37,70	466,12	68,38	19 639,01
A320 AS	11	884,87	-884,87	0,00	62,10	587,95	68,46	19 699,44
A320 AS	12	1 472,01	-1 472,01	0,00	92,87	789,23	68,57	19 775,39
A320 AS	13	2 260,16	-2 260,16	0,00	134,17	1 170,60	68,70	19 876,89
A320 AS	14	3 429,16	-3 429,16	0,00	195,44	2 086,96	68,90	20 026,49
A320 AS	15	5 513,26	-5 513,26	0,00	304,66	4 772,46	69,26	20 290,47
A320 AS	16	10 279,18	-10 279,18	0,00	554,43	1 145,67	70,06	20 881,59
A320 AS	17	11 423,28	-11 423,28	0,00	614,39	305,22	73,76	14 576,08
A320 AS	18	11 728,08	-11 728,08	0,00	630,36	1 578,36	74,69	4,45
A320 AS	19	13 304,28	-13 304,28	0,00	712,97	1 747,06	83,12	4,45
A320 AS	20	15 048,94	-15 048,94	0,00	804,40	7 925,64	91,56	4,45
A320 AS	21	22 963,71	-22 963,71	0,00	1 219,20	1 385,83	99,28	4,45
A320 AS	22	24 349,54	-24 349,54	0,00	1 219,20	1 755,88	107,51	4,45
A320 AS	23	26 105,42	-26 105,42	0,00	1 219,20	1 894,15	116,32	4,45
A320 AS	24	27 999,56	-27 999,56	0,00	1 219,20	2 032,42	125,14	4,45
A320 AS	25	30 031,99	-30 031,99	0,00	1 219,20	304,80	133,95	4,45
A320 AS	26	30 336,79	-30 336,79	0,00	1 219,20	30 480,00	135,24	18 314,71
A320 AS	27	60 816,79	-60 816,79	0,00	1 219,20	37 683,21	135,24	18 314,71
A320 AS	28	98 500,00	-98 500,00	0,00	1 219,20		135,24	18 314,71

B.3 CASE_ID: A320 DC

Gase_ID	segment_ID	sigma /m	segment_start_x/m	segment_start_y /m	segment_start_z/m	segment_length /m	True Airspeed /(m/s)	NPD_interpolation _thrust /N
A320 DC	1	0,00	0,00	0,00	2,00	22,37	0,00	110 076,04
A320 DC	2	22,37	22,37	0,00	2,00	67,12	9,30	108 028,38
A320 DC	3	89,49	89,49	0,00	2,00	111,87	18,60	105 980,71
A320 DC	4	201,36	201,36	0,00	2,00	156,61	27,90	103 933,05
A320 DC	5	357,98	357,98	0,00	2,00	201,36	37,19	101 885,39
A320 DC	6	559,34	559,34	0,00	2,00	246,11	46,49	99 837,72
A320 DC	7	805,44	805,44	0,00	2,00	290,85	55,79	97 790,05
A320 DC	8	1 096,30	1 096,30	0,00	2,00	335,60	65,09	95 742,40
A320 DC	9	1 431,90	1 431,90	0,00	2,00	380,35	74,39	93 694,73
A320 DC	10	1 812,25	1 812,25	0,00	2,00	106,71	83,69	91 647,06
A320 DC	11	1 917,87	1 917,87	0,00	17,20	127,73	83,76	91 726,28
A320 DC	12	2 043,94	2 043,94	0,00	37,72	151,89	83,84	91 820,73
A320 DC	13	2 193,86	2 193,86	0,00	62,12	191,59	83,94	91 932,93
A320 DC	14	2 382,97	2 382,97	0,00	92,91	257,18	84,07	92 074,26
A320 DC	15	2 636,81	2 636,81	0,00	134,23	381,46	84,24	92 263,63
A320 DC	16	3 013,31	3 013,31	0,00	195,53	680,07	84,49	92 543,79
A320 DC	17	3 684,54	3 684,54	0,00	304,80	15,48	84,93	93 041,17
A320 DC	18	3 700,00	3 700,00	0,00	305,55	666,79	85,12	93 005,68
A320 DC	19	4 366,85	4 363,47	-58,05	337,90	432,67	93,19	91 461,16
A320 DC	20	4 799,56	4 793,98	-95,71	358,89	312,88	98,07	90 547,59
A320 DC	21	5 112,47	5 095,85	-176,60	374,07	786,57	101,46	89 881,15
A320 DC	22	5 899,11	5 854,73	-379,94	412,23	22,29	109,50	88 345,06
A320 DC	23	5 921,41	5 874,91	-389,35	413,31	908,21	109,72	88 301,13
A320 DC	24	6 829,78	6 697,12	-772,75	455,80	169,59	118,05	86 754,18
A320 DC	25	6 998,67	6 850,00	-844,04	473,40	136,47	118,17	76 818,56
A320 DC	26	7 134,58	6 961,19	-921,89	487,56	143,67	118,26	67 774,02
A320 DC	27	7 277,66	7 078,24	-1 003,86	502,46	823,97	118,35	67 862,88
A320 DC	28	8 098,23	7 749,56	-1 473,92	587,92	1 104,12	118,85	68 370,22
A320 DC	29	9 197,79	8 526,08	-2 250,44	702,44	1 104,12	119,51	69 044,22
A320 DC	30	10 297,34	9 155,96	-3 150,00	816,96	939,49	120,17	69 711,70
A320 DC	31	11 232,95	9 550,86	-3 996,87	914,40	163,85	120,73	70 274,67
A320 DC	32	11 396,90	9 620,06	-4 145,27	920,24	906,89	121,75	70 272,44
A320 DC	33	12 304,37	9 854,63	-5 020,70	952,58	191,97	127,23	70 260,10
A320 DC	34	12 496,46	9 904,29	-5 206,02	959,42	934,94	128,37	70 257,62
A320 DC	35	13 431,99	9 985,72	-6 136,81	992,76	164,61	133,74	70 245,53

A320 DC	36	13 596,02	10 000,00	-6 300,00	1 008,94	2 860,13	133,85	70 320,85
A320 DC	37	16 442,34	10 000,00	-9 146,33	1 289,61	3 941,50	135,75	71 615,17
A320 DC	38	20 364,82	10 000,00	-13 068,80	1 676,40	6 633,81	138,32	73 361,45
A320 DC	39	26 970,56	10 000,00	-19 674,54	2 286,00	9 060,19	142,59	75 596,80
A320 DC	40	35 998,65	10 000,00	-28 702,63	3 048,00	77 873,28	148,25	77 670,82
A320 DC	41	113 596,02	10 000,00	-106 300,00	9 597,47		148,25	77 670,82

B.4 CASE_ID: A320 DS

case_ID	segment_ID	sigma /m	segment_start_x/m	segment_start_y/m	segment_start_z/m	segment_length /m	True Airspeed /(m/s)	NPD_interpolation _thrust /N
A320 DS	1	0,00	0,00	0,00	2,00	22,37	0,00	110 076,04
A320 DS	2	22,37	22,37	0,00	2,00	67,12	9,30	108 028,38
A320 DS	3	89,49	89,49	0,00	2,00	111,87	18,60	105 980,71
A320 DS	4	201,36	201,36	0,00	2,00	156,61	27,90	103 933,05
A320 DS	5	357,98	357,98	0,00	2,00	201,36	37,19	101 885,39
A320 DS	6	559,34	559,34	0,00	2,00	246,11	46,49	99 837,72
A320 DS	7	805,44	805,44	0,00	2,00	290,85	55,79	97 790,05
A320 DS	8	1 096,30	1 096,30	0,00	2,00	335,60	65,09	95 742,40
A320 DS	9	1 431,90	1 431,90	0,00	2,00	380,35	74,39	93 694,73
A320 DS	10	1 812,25	1 812,25	0,00	2,00	106,71	83,69	91 647,06
A320 DS	11	1 917,87	1 917,87	0,00	17,20	127,73	83,76	91 726,28
A320 DS	12	2 043,94	2 043,94	0,00	37,72	151,89	83,84	91 820,73
A320 DS	13	2 193,86	2 193,86	0,00	62,12	191,59	83,94	91 932,93
A320 DS	14	2 382,97	2 382,97	0,00	92,91	257,18	84,07	92 074,26
A320 DS	15	2 636,81	2 636,81	0,00	134,23	381,46	84,24	92 263,63
A320 DS	16	3 013,31	3 013,31	0,00	195,53	680,07	84,49	92 543,79
A320 DS	17	3 684,54	3 684,54	0,00	304,80	683,11	84,93	93 041,17
A320 DS	18	4 366,85	4 366,85	0,00	337,90	746,50	93,19	91 461,16
A320 DS	19	5 112,47	5 112,47	0,00	374,07	809,89	101,46	89 881,15
A320 DS	20	5 921,41	5 921,41	0,00	413,31	909,36	109,72	88 301,13
A320 DS	21	6 829,78	6 829,78	0,00	455,80	306,45	118,05	86 754,18
A320 DS	22	7 134,58	7 134,58	0,00	487,56	143,85	118,26	67 774,02
A320 DS	23	7 277,66	7 277,66	0,00	502,46	3 976,68	118,35	67 862,88
A320 DS	24	11 232,95	11 232,95	0,00	914,40	1 072,10	120,73	70 274,67
A320 DS	25	12 304,37	12 304,37	0,00	952,58	1 128,34	127,23	70 260,10
A320 DS	26	13 431,99	13 431,99	0,00	992,76	3 024,95	133,74	70 245,53
A320 DS	27	16 442,34	16 442,34	0,00	1 289,61	3 941,50	135,75	71 615,17
A320 DS	28	20 364,82	20 364,82	0,00	1 676,40	6 633,81	138,32	73 361,45
A320 DS	29	26 970,56	26 970,56	0,00	2 286,00	9 060,19	142,59	75 596,80
A320 DS	30	35 998,65	35 998,65	0,00	3 048,00	65 734,25	148,25	77 670,82
A320 DS	31	101 500,00	101 500,00	0,00	8 576,53		148,25	77 670,82

B.5 CASE_ID: A320 CI

case_ID	segment_ID	m/ sigma /m	segment_start_x/m	segment_start_y/m	segment_start_z /m	segment_length /m	True Airspeed /(m/s)	NPD_interpolation _thrust /N
A320 CI	1	-1 248,05	1 751,95	0,00	2,00	67,86	15,28	11 787,73
A320 CI	2	-1 180,19	1 819,81	0,00	2,00	97,60	23,85	21 610,84
A320 CI	3	-1 082,58	1 917,42	0,00	2,00	127,34	32,42	31 433,95
A320 CI	4	-955,24	2 044,76	0,00	2,00	157,08	41,00	41 257,06
A320 CI	5	-798,16	2 201,84	0,00	2,00	186,82	49,57	51 080,16
A320 CI	6	-611,35	2 388,65	0,00	2,00	216,56	58,14	60 903,27
A320 CI	7	-394,79	2 605,21	0,00	2,00	94,79	66,72	70 726,38
A320 CI	8	-300,00	2 700,00	0,00	2,00	328,31	68,26	19 545,26
A320 CI	9	27,96	3 027,96	0,00	17,19	391,97	68,32	19 588,05
A320 CI	10	419,38	3 419,38	0,00	37,70	466,12	68,38	19 639,01
A320 CI	11	884,87	3 884,87	0,00	62,10	587,95	68,46	19 699,44
A320 CI	12	1 472,01	4 472,01	0,00	92,87	789,23	68,57	19 775,39
A320 CI	13	2 260,16	5 260,16	0,00	134,17	1 170,60	68,70	19 876,89
A320 CI	14	3 429,16	6 429,16	0,00	195,44	1 072,31	68,90	20 026,49
A320 CI	15	4 500,00	7 500,00	0,00	251,56	523,65	69,08	20 162,56
A320 CI	16	5 023,60	8 020,94	-45,58	279,00	489,71	69,17	20 228,76
A320 CI	17	5 513,26	8 493,32	-172,15	304,66	33,94	69,26	20 290,47
A320 CI	18	5 547,20	8 526,06	-180,92	306,44	523,65	69,26	20 294,74
A320 CI	19	6 070,80	9 000,00	-401,92	333,88	523,65	69,35	20 360,50
A320 CI	20	6 594,40	9 428,36	-701,87	361,32	523,65	69,44	20 426,06
A320 CI	21	7 117,99	9 798,13	-1 071,64	388,76	523,65	69,53	20 491,41
A320 CI	22	7 641,59	10 098,08	-1 500,00	416,20	523,65	69,62	20 556,55
A320 CI	23	8 165,19	10 319,08	-1 973,94	443,64	523,65	69,71	20 621,48
A320 CI	24	8 688,79	10 454,42	-2 479,06	471,08	523,65	69,79	20 686,21
A320 CI	25	9 212,39	10 500,00	-3 000,00	498,52	523,65	69,88	20 750,73
A320 CI	26	9 735,99	10 454,42	-3 520,94	525,96	523,65	69,97	20 815,06
A320 CI	27	10 259,59	10 319,08	-4 026,06	553,40	19,59	70,06	20 879,19
A320 CI	28	10 279,18	10 310,81	-4 043,80	554,43	504,06	70,06	20 881,59
A320 CI	29	10 783,19	10 098,08	-4 500,00	580,85	523,65	71,71	18 372,49
A320 CI	30	11 306,78	9 798,13	-4 928,36	608,29	116,51	73,39	15 337,13
A320 CI	31	11 423,28	9 715,86	-5 010,63	614,39	304,83	73,76	14 576,08
A320 CI	32	11 728,08	9 500,61	-5 225,89	630,36	102,31	74,69	4,45
A320 CI	33	11 830,38	9 428,36	-5 298,13	635,72	523,65	75,27	4,45
A320 CI	34	12 353,98	9 000,00	-5 598,08	663,16	523,65	78,15	4,45
A320 CI	35	12 877,58	8 526,06	-5 819,08	690,60	426,74	80,93	4,45

Ω.	Ω.	.E	ΞE	.E	٦E	ΞE	(s)	n N
case_ID	segment_ID	sigma /m	segment_start_x/m	segment_start_y /m	segment_start_z /m	segment_length /m	True Airspeed /(m/s)	NPD_interpolation _thrust /N
S	gme	sigı	start	start	start	leng	pəa '	erpc _thr
	se		nt_s	nt_s	Ę,	ent_	rspe	_inte
			gme	gme	gme	gme	ie Ai	_OA!
			se§	seg	Se	se	Tru	2
A320 CI	36	13 304,28	8 114,42	-5 929,38	712,97	96,91	83,12	4,45
A320 CI	37	13 401,18	8 020,94	-5 954,42	718,04	523,65	83,62	4,45
A320 CI	38	13 924,78	7 500,00	-6 000,00	745,49	1 125,70	86,22	4,45
A320 CI	39	15 048,94	6 375,84	-6 000,00	804,40	2 101,77	91,56	4,45
A320 CI	40	17 147,83	4 276,95	-6 000,00	914,40	4 417,08	93,67	4,45
A320 CI	41	21 564,91	-140,13	-6 000,00	914,40	4 359,87	102,69	23 427,85
A320 CI	42	25 924,78	-4 500,00	-6 000,00	914,40	462,47	110,87	45 133,01
A320 CI	43	26 387,84	-4 960,71	-5 959,69	914,40	60,46	111,71	46 851,26
A320 CI	44	26 448,38	-5 020,94	-5 954,42	914,40	522,93	111,82	47 189,05
A320 CI	45	26 971,97	-5 526,06	-5 819,08	914,40	522,93	112,75	50 015,33
A320 CI	46	27 495,57	-6 000,00	-5 598,08	914,40	522,93	113,68	52 690,24
A320 CI	47	28 019,17	-6 428,36	-5 298,13	914,40	522,93	114,60	55 235,76
A320 CI	48	28 542,77	-6 798,13	-4 928,36	914,40	522,93	115,51	57 669,02
A320 CI	49	29 066,37	-7 098,08	-4 500,00	914,40	522,93	116,42	60 003,70
A320 CI	50	29 589,97	-7 319,08	-4 026,06	914,40	522,93	117,32	62 250,87
A320 CI	51	30 113,57	-7 454,42	-3 520,94	914,40	522,93	118,21	64 419,71
A320 CI	52	30 637,17	-7 500,00	-3 000,00	914,40	522,93	119,09	66 517,86
A320 CI	53	31 160,77	-7 454,42	-2 479,06	914,40	455,26	119,97	68 551,83
A320 CI	54	31 616,61	-7 336,59	-2 039,31	914,40	68,04	120,73	70 274,67
A320 CI	55	31 684,36	-7 319,08	-1 973,94	907,34	525,77	120,69	70 234,05
A320 CI	56	32 207,96	-7 098,08	-1 500,00	852,81	525,77	120,38	69 919,37
A320 CI	57	32 731,56	-6 798,13	-1 071,64	798,28	525,77	120,06	69 603,27
A320 CI	58	33 255,16	-6 428,36	-701,87	743,75	525,77	119,75	69 285,72
A320 CI	59	33 778,76	-6 000,00	-401,92	689,22	525,77	119,43	68 966,72
A320 CI	60	34 302,36	-5 526,06	-180,92	634,68	525,77	119,12	68 646,23
A320 CI	61	34 825,96	-5 020,94	-45,58	580,15	525,77	118,80	68 324,23
A320 CI	62	35 349,55	-4 500,00	0,00	525,62	223,54	118,48	68 000,72
A320 CI	63	35 571,89	-4 277,66	0,00	502,46	143,86	118,35	67 862,88
A320 CI	64	35 714,98	-4 134,58	0,00	487,56	306,45	118,26	67 774,02
A320 CI	65	36 019,78	-3 829,78	0,00	455,80	909,36	118,05	86 754,18
A320 CI	66	36 928,14	-2 921,41	0,00	413,31	809,89	109,72	88 301,13
A320 CI	67	37 737,09	-2 112,47	0,00	374,07	746,50	101,46	89 881,15
A320 CI	68	38 482,71	-1 366,84	0,00	337,90	683,11	93,19	91 461,16
A320 CI	69	39 165,02	-684,54	0,00	304,80	680,07	84,93	93 041,17
A320 CI	70	39 836,25	-13,31	0,00	195,53	381,46	84,49	92 543,79
A320 CI	71	40 212,75	363,19	0,00	134,23	257,19	84,24	92 263,63
A320 CI	72	40 466,59	617,04	0,00	92,91	191,59	84,07	92 074,26

case_ID	segment_ID	sigma /m	segment_start_x/m	segment_start_y /m	segment_start_z/m	segment_length /m	True Airspeed /(m/s)	NPD_interpolation _thrust /N
A320 CI	73	40 655,69	806,14	0,00	62,12	151,89	83,94	91 932,93
A320 CI	74	40 805,61	956,05	0,00	37,72	127,73	83,84	91 820,73
A320 CI	75	40 931,68	1 082,12	0,00	17,20	106,71	83,76	91 726,28
A320 CI	76	41 037,30	1 187,75	0,00	2,00	380,35	83,69	91 647,06
A320 CI	77	41 417,65	1 568,10	0,00	2,00	335,60	74,39	93 694,73
A320 CI	78	41 753,25	1 903,70	0,00	2,00	290,86	65,09	95 742,40
A320 CI	79	42 044,11	2 194,55	0,00	2,00	246,11	55,79	97 790,05
A320 CI	80	42 290,22	2 440,66	0,00	2,00	201,36	46,49	99 837,72
A320 CI	81	42 491,58	2 642,02	0,00	2,00	156,62	37,19	101 885,39
A320 CI	82	42 648,20	2 798,64	0,00	2,00	111,87	27,90	103 933,05
A320 CI	83	42 760,06	2 910,51	0,00	2,00	67,12	18,60	105 980,71
A320 CI	84	42 827,18	2 977,63	0,00	2,00	22,38	9,30	108 028,38
A320 CI	85	42 849,55	3 000,00	0,00	2,00		0,00	110 076,04

B.6 CASE_ID: CRJ9 AC

case_ID	segment_ID	sigma /m	segment_start_x /m	segment_start_y/m	segment_start_z/m	segment_length /m	True Airspeed /(m/s)	NPD_interpolation _thrust /N
3	egme	Sign	_star	start	star	_leng	peed	terpo _thr
	S		nent_	nent_	nent_	ment	Airsp	n_ n
			segn	segn	segn	segr	True	N P
CRJ9 AC	1	-1 197,33	1 197,33	0,00	2,00	59,13	15,28	6 016,19
CRJ9 AC	2	-1 138,20	1 138,20	0,00	2,00	86,85	24,63	6 016,19
CRJ9 AC	3	-1 051,35	1 051,35	0,00	2,00	114,56	33,98	6 016,19
CRJ9 AC	4	-936,79	936,79	0,00	2,00	142,28	43,34	6 016,19
CRJ9 AC	5	-794,51	794,51	0,00	2,00	170,00	52,69	6 016,19
CRJ9 AC	6	-624,51	624,51	0,00	2,00	197,71	62,05	6 016,19
CRJ9 AC	7	-426,80	426,80	0,00	2,00	126,80	71,40	6 016,19
CRJ9 AC	8	-300,00	300,00	0,00	2,00	360,98	80,19	15 831,59
CRJ9 AC	9	60,59	-60,59	0,00	18,90	430,97	79,99	15 868,01
CRJ9 AC	10	490,97	-490,97	0,00	41,45	512,50	79,75	15 911,38
CRJ9 AC	11	1 002,77	-1 002,77	0,00	68,28	646,45	79,47	15 962,80
CRJ9 AC	12	1 648,34	-1 648,34	0,00	102,11	867,76	79,11	16 027,42
CRJ9 AC	13	2 514,91	-2 514,91	0,00	147,52	1 287,09	78,62	16 113,75
CRJ9 AC	14	3 800,23	-3 800,23	0,00	214,88	2 294,62	77,90	16 240,96
CRJ9 AC	15	6 091,71	-6 091,71	0,00	334,98	5 247,35	76,59	16 465,31
CRJ9 AC	16	11 331,87	-11 331,87	0,00	609,60	7 177,97	73,51	16 967,21
CRJ9 AC	17	18 500,00	-18 500,00	0,00	985,27	1 099,67	74,88	17 800,60
CRJ9 AC	18	19 599,56	-19 593,98	-95,71	1 042,89	1 099,67	75,09	17 925,01
CRJ9 AC	19	20 699,12	-20 654,73	-379,94	1 100,52	1 099,67	75,30	18 048,57
CRJ9 AC	20	21 798,67	-21 650,00	-844,04	1 158,14	860,33	75,51	18 171,28
CRJ9 AC	21	22 658,91	-22 353,77	-1 336,83	1 203,23	239,34	75,67	18 266,71
CRJ9 AC	22	22 898,23	-22 549,56	-1 473,92	1 215,77	65,49	75,71	18 429,17
CRJ9 AC	23	22 963,71	-22 595,81	-1 520,16	1 219,20	1 032,76	75,72	18 473,37
CRJ9 AC	24	23 997,79	-23 326,08	-2 250,44	1 219,20	184,89	75,72	18 473,37
CRJ9 AC	25	24 182,91	-23 432,13	-2 401,89	1 219,20	304,41	75,72	18 473,37
CRJ9 AC	26	24 487,71	-23 606,73	-2 651,25	1 219,20	608,86	75,72	4,45
CRJ9 AC	27	25 097,34	-23 955,96	-3 150,00	1 219,20	121,05	83,74	4,45
CRJ9 AC	28	25 218,55	-24 007,12	-3 259,71	1 219,20	816,29	85,24	4,45
CRJ9 AC	29	26 035,88	-24 352,10	-3 999,53	1 219,20	160,82	94,77	4,45
CRJ9 AC	30	26 196,90	-24 420,06	-4 145,27	1 219,20	741,86	96,54	4,45
CRJ9 AC	31	26 939,71	-24 612,07	-4 861,86	1 219,20	356,30	104,29	4,45
CRJ9 AC	32	27 296,46	-24 704,29	-5 206,02	1 219,20	632,76	107,82	4,45
CRJ9 AC	33	27 930,03	-24 759,44	-5 836,37	1 219,20	465,40	113,82	4,45
CRJ9 AC	34	28 396,02	-24 800,00	-6 300,00	1 219,20	610,82	118,04	4,45
CRJ9 AC	35	29 006,84	-24 800,00	-6 910,82	1 219,20	1 163,31	123,34	4,45

CRJ9 AC	36	30 170,15	-24 800,00	-8 074,13	1 219,20	304,80	132,87	4,45
CRJ9 AC	37	30 474,95	-24 800,00	-8 378,93	1 219,20	30 480,00	135,24	12 397,62
CRJ9 AC	38	60 954,95	-24 800,00	-38 858,93	1 219,20	67 441,07	135,24	12 397,62
CRJ9 AC	39	128 396,02	-24 800,00	-106 300,00	1 219,20		135,24	12 397,62

B.7 CASE_ID: CRJ9 AS

Case_ID	segment_ID	sigma /m	segment_start_x /m	segment_start_y/m	segment_start_z/m	segment_length /m	True Airspeed /(m/s)	NPD_interpolation _thrust /N
CRJ9 AS	1	-1 197,33	1 197,33	0,00	2,00	59,13	15,28	6 016,19
CRJ9 AS	2	-1 138,20	1 138,20	0,00	2,00	86,85	24,63	6 016,19
CRJ9 AS	3	-1 051,35	1 051,35	0,00	2,00	114,56	33,98	6 016,19
CRJ9 AS	4	-936,79	936,79	0,00	2,00	142,28	43,34	6 016,19
CRJ9 AS	5	-794,51	794,51	0,00	2,00	170,00	52,69	6 016,19
CRJ9 AS	6	-624,51	624,51	0,00	2,00	197,71	62,05	6 016,19
CRJ9 AS	7	-426,80	426,80	0,00	2,00	126,80	71,40	6 016,19
CRJ9 AS	8	-300,00	300,00	0,00	2,00	360,98	80,19	15 831,59
CRJ9 AS	9	60,59	-60,59	0,00	18,90	430,97	79,99	15 868,01
CRJ9 AS	10	490,97	-490,97	0,00	41,45	512,50	79,75	15 911,38
CRJ9 AS	11	1 002,77	-1 002,77	0,00	68,28	646,45	79,47	15 962,80
CRJ9 AS	12	1 648,34	-1 648,34	0,00	102,11	867,76	79,11	16 027,42
CRJ9 AS	13	2 514,91	-2 514,91	0,00	147,52	1 287,09	78,62	16 113,75
CRJ9 AS	14	3 800,23	-3 800,23	0,00	214,88	2 294,62	77,90	16 240,96
CRJ9 AS	15	6 091,71	-6 091,71	0,00	334,98	5 247,35	76,59	16 465,31
CRJ9 AS	16	11 331,87	-11 331,87	0,00	609,60	11 342,59	73,51	16 967,21
CRJ9 AS	17	22 658,91	-22 658,91	0,00	1 203,23	305,22	75,67	18 266,71
CRJ9 AS	18	22 963,71	-22 963,71	0,00	1 219,20	1 219,20	75,72	18 473,37
CRJ9 AS	19	24 182,91	-24 182,91	0,00	1 219,20	304,80	75,72	18 473,37
CRJ9 AS	20	24 487,71	-24 487,71	0,00	1 219,20	730,84	75,72	4,45
CRJ9 AS	21	25 218,55	-25 218,55	0,00	1 219,20	817,33	85,24	4,45
CRJ9 AS	22	26 035,88	-26 035,88	0,00	1 219,20	903,83	94,77	4,45
CRJ9 AS	23	26 939,71	-26 939,71	0,00	1 219,20	990,32	104,29	4,45
CRJ9 AS	24	27 930,03	-27 930,03	0,00	1 219,20	1 076,81	113,82	4,45
CRJ9 AS	25	29 006,84	-29 006,84	0,00	1 219,20	1 163,31	123,34	4,45
CRJ9 AS	26	30 170,15	-30 170,15	0,00	1 219,20	304,80	132,87	4,45
CRJ9 AS	27	30 474,95	-30 474,95	0,00	1 219,20	30 480,00	135,24	12 397,62
CRJ9 AS	28	60 954,95	-60 954,95	0,00	1 219,20	37 545,05	135,24	12 397,62
CRJ9 AS	29	98 500,00	-98 500,00	0,00	1 219,20		135,24	12 397,62

B.8 CASE_ID: CRJ9 DC

case_ID	segment_ID	sigma /m	segment_start_x /m	segment_start_y/m	segment_start_z/m	segment_length /m	True Airspeed /(m/s)	NPD_interpolation _thrust /N
CRJ9 DC	1	0,00	0,00	0,00	2,00	23,53	0,00	58 913,65
CRJ9 DC	2	23,53	23,53	0,00	2,00	70,59	9,60	57 520,76
CRJ9 DC	3	94,13	94,13	0,00	2,00	117,66	19,20	56 127,88
CRJ9 DC	4	211,78	211,78	0,00	2,00	164,72	28,81	54 735,00
CRJ9 DC	5	376,50	376,50	0,00	2,00	211,78	38,41	53 342,11
CRJ9 DC	6	588,28	588,28	0,00	2,00	258,84	48,01	51 949,23
CRJ9 DC	7	847,13	847,13	0,00	2,00	305,91	57,61	50 556,34
CRJ9 DC	8	1 153,04	1 153,04	0,00	2,00	352,97	67,21	49 163,46
CRJ9 DC	9	1 506,01	1 506,01	0,00	2,00	400,03	76,82	47 770,58
CRJ9 DC	10	1 906,04	1 906,04	0,00	2,00	122,21	86,42	46 377,69
CRJ9 DC	11	2 027,18	2 027,18	0,00	18,16	146,20	86,50	46 430,47
CRJ9 DC	12	2 171,76	2 171,76	0,00	39,82	173,86	86,59	46 493,40
CRJ9 DC	13	2 343,70	2 343,70	0,00	65,59	219,30	86,71	46 568,11
CRJ9 DC	14	2 560,58	2 560,58	0,00	98,10	294,38	86,85	46 662,19
CRJ9 DC	15	2 851,71	2 851,71	0,00	141,73	324,79	87,04	46 788,17
CRJ9 DC	16	3 172,02	3 172,02	0,00	195,53	535,38	87,26	46 938,97
CRJ9 DC	17	3 700,00	3 700,00	0,00	284,21	124,18	87,63	47 186,50
CRJ9 DC	18	3 822,62	3 822,00	-10,67	304,80	540,39	87,71	47 243,80
CRJ9 DC	19	4 363,50	4 360,14	-57,75	319,11	435,65	96,71	46 009,98
CRJ9 DC	20	4 799,56	4 793,98	-95,71	330,65	157,48	103,40	45 107,03
CRJ9 DC	21	4 957,18	4 946,04	-136,45	334,82	306,66	105,71	44 776,16
CRJ9 DC	22	5 261,98	5 240,08	-215,24	371,89	641,03	105,91	38 409,81
CRJ9 DC	23	5 899,11	5 854,73	-379,94	449,36	439,39	106,32	38 605,85
CRJ9 DC	24	6 335,84	6 250,03	-564,27	502,46	666,88	106,60	38 739,66
CRJ9 DC	25	6 998,67	6 850,00	-844,04	583,06	1 106,27	107,02	38 941,87
CRJ9 DC	26	8 098,23	7 749,56	-1 473,92	716,76	1 106,27	107,72	39 275,01
CRJ9 DC	27	9 197,79	8 526,08	-2 250,44	850,45	529,12	108,41	39 605,34
CRJ9 DC	28	9 723,70	8 827,35	-2 680,69	914,40	573,05	108,74	39 762,37
CRJ9 DC	29	10 297,34	9 155,96	-3 150,00	926,63	330,54	114,07	39 376,92
CRJ9 DC	30	10 628,23	9 295,62	-3 449,51	933,68	767,87	117,04	39 152,85
CRJ9 DC	31	11 396,90	9 620,06	-4 145,27	950,06	202,16	123,66	38 671,15
CRJ9 DC	32	11 599,28	9 672,38	-4 340,50	954,38	896,25	125,34	38 543,33
CRJ9 DC	33	12 496,46	9 904,29	-5 206,02	973,50	140,23	132,55	38 016,84
CRJ9 DC	34	12 636,83	9 916,51	-5 345,68	976,49	962,62	133,64	37 933,81
CRJ9 DC	35	13 596,02	10 000,00	-6 300,00	1 071,04	2 228,13	134,34	38 163,58

CRJ9 DC	36	15 813,40	10 000,00	-8 517,38	1 289,61	8 768,67	135,95	38 689,53
CRJ9 DC	37	24 539,77	10 000,00	-17 243,76	2 149,78	9 156,57	142,10	40 687,58
CRJ9 DC	38	33 652,18	10 000,00	-26 356,16	3 048,00	80 331,28	148,25	42 685,64
CRJ9 DC	39	113 596,02	10 000,00	-106 300,00	10 928,16		148,25	42 685,64

B.9 CASE_ID: CRJ9 DS

case_ID	segment_ID	sigma /m	segment_start_x/m	segment_start_y/m	segment_start_z/m	segment_length /m	True Airspeed /(m/s)	NPD_interpolation _thrust /N
CRJ9 DS	1	0,00	0,00	0,00	2,00	23,53	0,00	58 913,65
CRJ9 DS	2	23,53	23,53	0,00	2,00	70,59	9,60	57 520,76
CRJ9 DS	3	94,13	94,13	0,00	2,00	117,66	19,20	56 127,88
CRJ9 DS	4	211,78	211,78	0,00	2,00	164,72	28,81	54 735,00
CRJ9 DS	5	376,50	376,50	0,00	2,00	211,78	38,41	53 342,11
CRJ9 DS	6	588,28	588,28	0,00	2,00	258,84	48,01	51 949,23
CRJ9 DS	7	847,13	847,13	0,00	2,00	305,91	57,61	50 556,34
CRJ9 DS	8	1 153,04	1 153,04	0,00	2,00	352,97	67,21	49 163,46
CRJ9 DS	9	1 506,01	1 506,01	0,00	2,00	400,03	76,82	47 770,58
CRJ9 DS	10	1 906,04	1 906,04	0,00	2,00	122,21	86,42	46 377,69
CRJ9 DS	11	2 027,18	2 027,18	0,00	18,16	146,20	86,50	46 430,47
CRJ9 DS	12	2 171,76	2 171,76	0,00	39,82	173,86	86,59	46 493,40
CRJ9 DS	13	2 343,70	2 343,70	0,00	65,59	219,30	86,71	46 568,11
CRJ9 DS	14	2 560,58	2 560,58	0,00	98,10	294,38	86,85	46 662,19
CRJ9 DS	15	2 851,71	2 851,71	0,00	141,73	324,79	87,04	46 788,17
CRJ9 DS	16	3 172,02	3 172,02	0,00	195,53	659,71	87,26	46 938,97
CRJ9 DS	17	3 822,62	3 822,62	0,00	304,80	541,07	87,71	47 243,80
CRJ9 DS	18	4 363,50	4 363,50	0,00	319,11	593,88	96,71	46 009,98
CRJ9 DS	19	4 957,18	4 957,18	0,00	334,82	307,05	105,71	44 776,16
CRJ9 DS	20	5 261,98	5 261,98	0,00	371,89	1 081,77	105,91	38 409,81
CRJ9 DS	21	6 335,84	6 335,84	0,00	502,46	3 412,81	106,60	38 739,66
CRJ9 DS	22	9 723,70	9 723,70	0,00	914,40	904,74	108,74	39 762,37
CRJ9 DS	23	10 628,23	10 628,23	0,00	933,68	971,26	117,04	39 152,85
CRJ9 DS	24	11 599,28	11 599,28	0,00	954,38	1 037,79	125,34	38 543,33
CRJ9 DS	25	12 636,83	12 636,83	0,00	976,49	3 191,96	133,64	37 933,81
CRJ9 DS	26	15 813,40	15 813,40	0,00	1 289,61	8 768,67	135,95	38 689,53
CRJ9 DS	27	24 539,77	24 539,77	0,00	2 149,78	9 156,57	142,10	40 687,58
CRJ9 DS	28	33 652,18	33 652,18	0,00	3 048,00	68 176,64	148,25	42 685,64
CRJ9 DS	29	101 500,00	101 500,00	0,00	9 735,85		148,25	42 685,64

B.10 CASE_ID: CRJ9 CI

case_ID	segment_ID	sigma /m	segment_start_x/m	segment_start_y/m	segment_start_z/m	segment_length /m	True Airspeed /(m/s)	NPD_interpolation _thrust /N
CRJ9 CI	1	-1 197,33	1 802,67	0,00	2,00	59,13	15,28	6 016,19
CRJ9 CI	2	-1 138,20	1 861,80	0,00	2,00	86,85	24,63	6 016,19
CRJ9 CI	3	-1 051,35	1 948,65	0,00	2,00	114,56	33,98	6 016,19
CRJ9 CI	4	-936,79	2 063,21	0,00	2,00	142,28	43,34	6 016,19
CRJ9 CI	5	-794,51	2 205,49	0,00	2,00	170,00	52,69	6 016,19
CRJ9 CI	6	-624,51	2 375,49	0,00	2,00	197,71	62,05	6 016,19
CRJ9 CI	7	-426,80	2 573,20	0,00	2,00	126,80	71,40	6 016,19
CRJ9 CI	8	-300,00	2 700,00	0,00	2,00	360,98	80,19	15 831,59
CRJ9 CI	9	60,59	3 060,59	0,00	18,90	430,97	79,99	15 868,01
CRJ9 CI	10	490,97	3 490,97	0,00	41,45	512,50	79,75	15 911,38
CRJ9 CI	11	1 002,77	4 002,77	0,00	68,28	646,45	79,47	15 962,80
CRJ9 CI	12	1 648,34	4 648,34	0,00	102,11	867,76	79,11	16 027,42
CRJ9 CI	13	2 514,91	5 514,91	0,00	147,52	1 287,09	78,62	16 113,75
CRJ9 CI	14	3 800,23	6 800,23	0,00	214,88	700,73	77,90	16 240,96
CRJ9 CI	15	4 500,00	7 500,00	0,00	251,56	523,65	77,50	16 309,80
CRJ9 CI	16	5 023,60	8 020,94	-45,58	279,00	523,65	77,20	16 361,12
CRJ9 CI	17	5 547,20	8 526,06	-180,92	306,44	523,65	76,90	16 412,28
CRJ9 CI	18	6 070,80	9 000,00	-401,92	333,88	20,92	76,60	16 463,28
CRJ9 CI	19	6 091,71	9 017,11	-413,91	334,98	502,74	76,59	16 465,31
CRJ9 CI	20	6 594,40	9 428,36	-701,87	361,32	523,65	76,30	16 514,12
CRJ9 CI	21	7 117,99	9 798,13	-1 071,64	388,76	523,65	76,00	16 564,81
CRJ9 CI	22	7 641,59	10 098,08	-1 500,00	416,20	523,65	75,69	16 615,34
CRJ9 CI	23	8 165,19	10 319,08	-1 973,94	443,64	523,65	75,39	16 665,72
CRJ9 CI	24	8 688,79	10 454,42	-2 479,06	471,08	523,65	75,08	16 715,94
CRJ9 CI	25	9 212,39	10 500,00	-3 000,00	498,52	523,65	74,77	16 766,02
CRJ9 CI	26	9 735,99	10 454,42	-3 520,94	525,96	523,65	74,46	16 815,95
CRJ9 CI	27	10 259,59	10 319,08	-4 026,06	553,40	523,65	74,15	16 865,73
CRJ9 CI	28	10 783,19	10 098,08	-4 500,00	580,84	523,65	73,84	16 915,36
CRJ9 CI	29	11 306,78	9 798,13	-4 928,36	608,29	25,09	73,52	16 964,85
CRJ9 CI	30	11 331,87	9 780,42	-4 946,08	609,60	498,57	73,51	16 967,21
CRJ9 CI	31	11 830,38	9 428,36	-5 298,13	635,73	523,65	73,60	17 026,49
CRJ9 CI	32	12 353,98	9 000,00	-5 598,08	663,17	523,65	73,71	17 088,53
CRJ9 CI	33	12 877,58	8 526,06	-5 819,08	690,61	523,65	73,81	17 150,35
CRJ9 CI	34	13 401,18	8 020,94	-5 954,42	718,05	523,65	73,91	17 211,94
CRJ9 CI	35	13 924,78	7 500,00	-6 000,00	745,49	3 227,41	74,01	17 273,32

\Box	\Box	E	E /	E/	Т.	E	(s/ı	ion /
case_ID	segment_ID	sigma / m	segment_start_x/m	segment_start_y /m	segment_start_z /m	segment_length /m	True Airspeed /(m/s)	NPD_interpolation _thrust /N
	egm	sig	star	star	_staı	_len	peed	terp _th
	S		ent	ent	ent	nent	Airsp	ri_C
			egm	egm	egm	segn	ne /	NP[
			Š				Ţ	
CRJ9 CI	36	17 147,77	4 277,01	-6 000,00	914,40	3 437,15	74,62	17 646,40
CRJ9 CI	37	20 584,92	839,86	-6 000,00	914,40	3 808,73	83,15	23 175,39
CRJ9 CI	38	24 393,65	-2 968,87	-6 000,00	914,40	1 531,13	91,68	28 704,39
CRJ9 CI	39	25 924,78	-4 500,00	-6 000,00	914,40	522,93	94,89	30 844,74
CRJ9 CI	40	26 448,38	-5 020,94	-5 954,42	914,40	522,93	95,97	31 543,37
CRJ9 CI	41	26 971,97	-5 526,06	-5 819,08	914,40	522,93	97,03	32 226,85
CRJ9 CI	42	27 495,57	-6 000,00	-5 598,08	914,40	522,93	98,08	32 896,14
CRJ9 CI	43	28 019,17	-6 428,36	-5 298,13	914,40	522,93	99,12	33 552,08
CRJ9 CI	44	28 542,77	-6 798,13	-4 928,36	914,40	31,15	100,15	34 195,44
CRJ9 CI	45	28 573,96	-6 816,00	-4 902,85	914,40	491,79	100,21	34 233,38
CRJ9 CI	46	29 066,37	-7 098,08	-4 500,00	914,40	522,93	101,17	34 873,80
CRJ9 CI	47	29 589,97	-7 319,08	-4 026,06	914,40	522,93	102,18	35 542,13
CRJ9 CI	48	30 113,57	-7 454,42	-3 520,94	914,40	522,93	103,17	36 198,12
CRJ9 CI	49	30 637,17	-7 500,00	-3 000,00	914,40	522,93	104,16	36 842,43
CRJ9 CI	50	31 160,77	-7 454,42	-2 479,06	914,40	522,93	105,14	37 475,66
CRJ9 CI	51	31 684,36	-7 319,08	-1 973,94	914,40	522,93	106,11	38 098,37
CRJ9 CI	52	32 207,96	-7 098,08	-1 500,00	914,40	522,93	107,07	38 711,07
CRJ9 CI	53	32 731,56	-6 798,13	-1 071,64	914,40	393,79	108,03	39 314,21
CRJ9 CI	54	33 125,86	-6 519,68	-793,18	914,40	130,09	108,74	39 762,37
CRJ9 CI	55	33 255,16	-6 428,36	-701,87	898,68	526,80	108,66	39 723,82
CRJ9 CI	56	33 778,76	-6 000,00	-401,92	835,01	526,80	108,33	39 567,33
CRJ9 CI	57	34 302,36	-5 526,06	-180,92	771,35	526,80	108,00	39 410,23
CRJ9 CI	58	34 825,96	-5 020,94	-45,58	707,68	526,80	107,67	39 252,48
CRJ9 CI	59	35 349,55	-4 500,00	0,00	644,02	1 172,73	107,34	39 094,11
CRJ9 CI	60	36 513,71	-3 335,84	0,00	502,46	1 081,77	106,60	38 739,66
CRJ9 CI	61	37 587,58	-2 261,98	0,00	371,89	307,04	105,91	38 409,81
CRJ9 CI	62	37 892,38	-1 957,18	0,00	334,82	593,88	105,71	44 776,16
CRJ9 CI	63	38 486,05	-1 363,50	0,00	319,11	541,08	96,71	46 009,98
CRJ9 CI	64	39 026,94	-822,62	0,00	304,80	659,71	87,71	47 243,80
CRJ9 CI	65	39 677,54	-172,02	0,00	195,53	324,80	87,26	46 938,97
CRJ9 CI	66	39 997,85	148,29	0,00	141,73	294,38	87,04	46 788,17
CRJ9 CI	67	40 288,97	439,42	0,00	98,10	219,30	86,85	46 662,19
CRJ9 CI	68	40 505,85	656,30	0,00	65,59	173,86	86,71	46 568,11
CRJ9 CI	69	40 677,79	828,23	0,00	39,82	146,20	86,59	46 493,40
CRJ9 CI	70	40 822,38	972,82	0,00	18,16	122,21	86,50	46 430,47
CRJ9 CI	71	40 943,52	1 093,96	0,00	2,00	400,03	86,42	46 377,69
CRJ9 CI	72	41 343,55	1 493,99	0,00	2,00	352,97	76,82	47 770,58

case_ID	segment_ID	sigma / m	segment_start_x/m	segment_start_y/m	segment_start_z /m	segment_length/m	True Airspeed /(m/s)	NPD_interpolation _thrust /N
CRJ9 CI	73	41 696,52	1 846,96	0,00	2,00	305,91	67,21	49 163,46
CRJ9 CI	74	42 002,43	2 152,87	0,00	2,00	258,84	57,61	50 556,34
CRJ9 CI	75	42 261,27	2 411,71	0,00	2,00	211,79	48,01	51 949,23
CRJ9 CI	76	42 473,05	2 623,50	0,00	2,00	164,72	38,41	53 342,11
CRJ9 CI	77	42 637,77	2 788,22	0,00	2,00	117,66	28,81	54 735,00
CRJ9 CI	78	42 755,43	2 905,88	0,00	2,00	70,59	19,20	56 127,88
CRJ9 CI	79	42 826,02	2 976,47	0,00	2,00	23,53	9,60	57 520,76
CRJ9 CI	80	42 849,55	3 000,00	0,00	2,00		0,00	58 913,65

B.11 CASE_ID: DH8C AC

case_ID	segment_ID	sigma /m	segment_start_x/m	segment_start_y/m	segment_start_z /m	segment_length /m	True Airspeed /(m/s)	NPD_interpolation _thrust /%
DH8C AC	1	-969,34	969,34	0,00	2,00	88,75	15,28	4,40
DH8C AC	2	-880,59	880,59	0,00	2,00	129,99	24,52	9,82
DH8C AC	3	-750,60	750,60	0,00	2,00	171,22	33,77	15,25
DH8C AC	4	-579,38	579,38	0,00	2,00	212,45	43,01	20,68
DH8C AC	5	-366,93	366,93	0,00	2,00	66,93	52,26	26,10
DH8C AC	6	-300,00	300,00	0,00	2,00	328,46	55,04	18,71
DH8C AC	7	28,11	-28,11	0,00	17,20	392,15	55,09	18,75
DH8C AC	8	419,71	-419,71	0,00	37,72	466,34	55,14	18,80
DH8C AC	9	885,41	-885,41	0,00	62,12	588,22	55,21	18,85
DH8C AC	10	1 472,82	-1 472,82	0,00	92,91	789,59	55,29	18,92
DH8C AC	11	2 261,33	-2 261,33	0,00	134,23	1 171,14	55,40	19,02
DH8C AC	12	3 430,87	-3 430,87	0,00	195,53	2 087,91	55,57	19,16
DH8C AC	13	5 515,92	-5 515,92	0,00	304,80	2 911,96	55,86	19,40
DH8C AC	14	8 423,89	-8 423,89	0,00	457,20	2 131,76	60,96	16,42
DH8C AC	15	10 552,72	-10 552,72	0,00	568,77	7 958,18	62,24	15,61
DH8C AC	16	18 500,00	-18 500,00	0,00	985,27	1 099,67	66,81	12,14
DH8C AC	17	19 599,56	-19 593,98	-95,71	1 042,89	1 099,67	67,42	11,58
DH8C AC	18	20 699,12	-20 654,73	-379,94	1 100,52	1 099,67	68,02	10,99
DH8C AC	19	21 798,67	-21 650,00	-844,04	1 158,15	860,33	68,62	10,37
DH8C AC	20	22 658,91	-22 353,77	-1 336,83	1 203,23	239,34	69,08	9,85
DH8C AC	21	22 898,23	-22 549,56	-1 473,92	1 215,77	65,49	69,20	12,42
DH8C AC	22	22 963,71	-22 595,81	-1 520,16	1 219,20	1 032,76	69,24	13,03
DH8C AC	23	23 997,79	-23 326,08	-2 250,44	1 219,20	657,08	74,74	13,03
DH8C AC	24	24 655,70	-23 702,97	-2 788,69	1 219,20	441,08	78,04	13,03
DH8C AC	25	25 097,34	-23 955,96	-3 150,00	1 219,20	1 098,16	80,17	13,03
DH8C AC	26	26 196,90	-24 420,06	-4 145,27	1 219,20	352,50	85,26	13,03
DH8C AC	27	26 549,85	-24 511,30	-4 485,76	1 219,20	745,66	86,83	13,03
DH8C AC	28	27 296,46	-24 704,29	-5 206,02	1 219,20	1 098,16	90,07	13,03
DH8C AC	29	28 396,02	-24 800,00	-6 300,00	1 219,20	250,13	94,63	13,03
DH8C AC	30	28 646,15	-24 800,00	-6 550,13	1 219,20	304,80	95,63	13,03
DH8C AC	31	28 950,95	-24 800,00	-6 854,93	1 219,20	15 240,00	96,81	30,39
DH8C AC	32	44 190,95	-24 800,00	-22 094,93	1 219,20	84 205,07	96,81	30,39
DH8C AC	33	128 396,02	-24 800,00	-106 300,00	1 219,20	-	96,81	30,39

B.12 CASE_ID: DH8C AS

case_ID	segment_ID	sigma /m	segment_start_x /m	segment_start_y/m	segment_start_z/m	segment_length /m	True Airspeed /(m/s)	NPD_interpolation _thrust /%
DH8C AS	1	-969,34	969,34	0,00	2,00	88,75	15,28	4,40
DH8C AS	2	-880,59	880,59	0,00	2,00	129,99	24,52	9,82
DH8C AS	3	-750,60	750,60	0,00	2,00	171,22	33,77	15,25
DH8C AS	4	-579,38	579,38	0,00	2,00	212,45	43,01	20,68
DH8C AS	5	-366,93	366,93	0,00	2,00	66,93	52,26	26,10
DH8C AS	6	-300,00	300,00	0,00	2,00	328,46	55,04	18,71
DH8C AS	7	28,11	-28,11	0,00	17,20	392,15	55,09	18,75
DH8C AS	8	419,71	-419,71	0,00	37,72	466,34	55,14	18,80
DH8C AS	9	885,41	-885,41	0,00	62,12	588,22	55,21	18,85
DH8C AS	10	1 472,82	-1 472,82	0,00	92,91	789,59	55,29	18,92
DH8C AS	11	2 261,33	-2 261,33	0,00	134,23	1 171,14	55,40	19,02
DH8C AS	12	3 430,87	-3 430,87	0,00	195,53	2 087,91	55,57	19,16
DH8C AS	13	5 515,92	-5 515,92	0,00	304,80	2 911,96	55,86	19,40
DH8C AS	14	8 423,89	-8 423,89	0,00	457,20	2 131,76	60,96	16,42
DH8C AS	15	10 552,72	-10 552,72	0,00	568,77	12 122,80	62,24	15,61
DH8C AS	16	22 658,91	-22 658,91	0,00	1 203,23	305,22	69,08	9,85
DH8C AS	17	22 963,71	-22 963,71	0,00	1 219,20	1 691,99	69,24	13,03
DH8C AS	18	24 655,70	-24 655,70	0,00	1 219,20	1 894,15	78,04	13,03
DH8C AS	19	26 549,85	-26 549,85	0,00	1 219,20	2 096,30	86,83	13,03
DH8C AS	20	28 646,15	-28 646,15	0,00	1 219,20	304,80	95,63	13,03
DH8C AS	21	28 950,95	-28 950,95	0,00	1 219,20	15 240,00	96,81	30,39
DH8C AS	22	44 190,95	-44 190,95	0,00	1 219,20	54 309,05	96,81	30,39
DH8C AS	23	98 500,00	-98 500,00	0,00	1 219,20		96,81	30,39

B.13 CASE_ID: DH8C DC

	Ω_	m/	m/	m/	m/	m/	(s/u	ion /%
case_l	segment_	sigma /m	۲ ۲	t, ^_	rt_z	segment_length /m	n)/ k	NPD_interpolation _thrust /%
	segn	is	_sta	_sta	sta	t_lei	beed	iterp _th
	• ,		nent	nent	nent	men.	Airs	D_ir
			segment_start_x/m	segment_start_y,	segment_start_z,	segr	True Airspeed /(m/s)	NP
DH8C DC	1	0,00	0,00	0,00	2,00	23,41	0,00	150,90
DH8C DC	2	23,41	23,41	0,00	2,00	70,24	9,54	141,60
DH8C DC	3	93,65	93,65	0,00	2,00	117,06	19,08	132,31
DH8C DC	4	210,72	210,72	0,00	2,00	163,89	28,62	123,01
DH8C DC	5	374,60	374,60	0,00	2,00	210,72	38,17	113,72
DH8C DC	6	585,32	585,32	0,00	2,00	257,54	47,71	104,42
DH8C DC	7	842,86	842,86	0,00	2,00	111,63	57,25	95,13
DH8C DC	8	953,46	953,46	0,00	17,20	133,59	57,29	95,25
DH8C DC	9	1 085,46	1 085,46	0,00	37,72	158,86	57,35	95,38
DH8C DC	10	1 242,43	1 242,43	0,00	62,12	200,38	57,42	95,55
DH8C DC	11	1 440,43	1 440,43	0,00	92,91	268,98	57,50	95,76
DH8C DC	12	1 706,22	1 706,22	0,00	134,23	398,95	57,62	96,03
DH8C DC	13	2 100,43	2 100,43	0,00	195,53	711,26	57,78	96,44
DH8C DC	14	2 803,25	2 803,25	0,00	304,80	690,89	58,08	97,17
DH8C DC	15	3 490,36	3 490,36	0,00	377,01	210,18	63,32	92,80
DH8C DC	16	3 700,00	3 700,00	0,00	392,02	95,28	64,96	86,52
DH8C DC	17	3 795,16	3 794,68	-8,28	398,83	785,07	65,69	83,52
DH8C DC	18	4 579,22	4 574,76	-76,53	454,91	221,41	71,40	77,29
DH8C DC	19	4 799,56	4 793,98	-95,71	479,36	209,23	71,48	77,44
DH8C DC	20	5 007,77	4 994,85	-149,53	502,46	895,69	71,56	77,58
DH8C DC	21	5 899,11	5 854,73	-379,94	601,37	1 104,92	71,91	78,18
DH8C DC	22	6 998,67	6 850,00	-844,04	723,37	1 104,92	72,33	78,91
DH8C DC	23	8 098,23	7 749,56	-1 473,92	845,38	625,07	72,75	79,64
DH8C DC	24	8 720,27	8 188,85	-1 913,21	914,40	477,70	72,99	80,05
DH8C DC	25	9 197,79	8 526,08	-2 250,44	941,83	1 099,98	75,16	78,64
DH8C DC	26	10 297,34	9 155,96	-3 150,00	1 005,00	255,42	79,93	75,29
DH8C DC	27	10 552,67	9 263,73	-3 381,11	1 019,67	844,55	81,00	74,49
DH8C DC	28	11 396,90	9 620,06	-4 145,27	1 068,17	1 099,98	84,43	72,22
DH8C DC	29	12 496,46	9 904,29	-5 206,02	1 131,33	79,30	88,71	69,16
DH8C DC	30	12 575,73	9 911,19	-5 284,88	1 135,89	1 020,68	89,01	68,93
DH8C DC	31	13 596,02	10 000,00	-6 300,00	1 194,50	1 195,39	92,79	66,43
DH8C DC	32	14 789,44	10 000,00	-7 493,42	1 263,06	397,29	97,02	63,37
DH8C DC	33	15 185,84	10 000,00	-7 889,82	1 289,61	5 788,23	97,15	63,53
DH8C DC	34	20 961,13	10 000,00	-13 665,11	1 676,40	9 428,96	99,02	65,86
DH8C DC	35	30 370,36	10 000,00	-23 074,34	2 286,00	12 445,29	102,11	69,54

DH8C DC	36	42 792,30	10 000,00	-35 496,29	3 048,00	70 936,80	106,12	74,13
DH8C DC	37	113 596,02	10 000,00	-106 300,00	7 391,32		106,12	74,13

B.14 CASE_ID: DH8C DS

case_ID	segment_ID	m/ engis	segment_start_x /m	segment_start_y/m	segment_start_z/m	segment_length /m	True Airspeed /(m/s)	NPD_interpolation _thrust /%
DH8C DS	1	0,00	0,00	0,00	2,00	23,41	0,00	150,90
DH8C DS	2	23,41	23,41	0,00	2,00	70,24	9,54	141,60
DH8C DS	3	93,65	93,65	0,00	2,00	117,06	19,08	132,31
DH8C DS	4	210,72	210,72	0,00	2,00	163,89	28,62	123,01
DH8C DS	5	374,60	374,60	0,00	2,00	210,72	38,17	113,72
DH8C DS	6	585,32	585,32	0,00	2,00	257,54	47,71	104,42
DH8C DS	7	842,86	842,86	0,00	2,00	111,63	57,25	95,13
DH8C DS	8	953,46	953,46	0,00	17,20	133,59	57,29	95,25
DH8C DS	9	1085,46	1085,46	0,00	37,72	158,86	57,35	95,38
DH8C DS	10	1242,43	1242,43	0,00	62,12	200,38	57,42	95,55
DH8C DS	11	1440,43	1440,43	0,00	92,91	268,98	57,50	95,76
DH8C DS	12	1706,22	1706,22	0,00	134,23	398,95	57,62	96,03
DH8C DS	13	2100,43	2100,43	0,00	195,53	711,26	57,78	96,44
DH8C DS	14	2803,25	2803,25	0,00	304,80	690,89	58,08	97,17
DH8C DS	15	3490,36	3490,36	0,00	377,01	305,58	63,32	92,80
DH8C DS	16	3795,16	3795,16	0,00	398,83	786,06	65,69	83,52
DH8C DS	17	4579,22	4579,22	0,00	454,91	431,18	71,40	77,29
DH8C DS	18	5007,77	5007,77	0,00	502,46	3735,28	71,56	77,58
DH8C DS	19	8720,27	8720,27	0,00	914,40	1835,42	72,99	80,05
DH8C DS	20	10552,67	10552,67	0,00	1019,67	2026,39	81,00	74,49
DH8C DS	21	12575,73	12575,73	0,00	1135,89	2217,36	89,01	68,93
DH8C DS	22	14789,44	14789,44	0,00	1263,06	397,29	97,02	63,37
DH8C DS	23	15185,84	15185,84	0,00	1289,61	5788,23	97,15	63,53
DH8C DS	24	20961,13	20961,13	0,00	1676,40	9428,96	99,02	65,86
DH8C DS	25	30370,36	30370,36	0,00	2286,00	12445,29	102,11	69,54
DH8C DS	26	42792,30	42792,30	0,00	3048,00	58818,05	106,12	74,13
DH8C DS	27	101500,00	101500,00	0,00	6649,31		106,12	74,13

B.15 CASE_ID: DH8C CI

case_ID	segment_ID	sigma /m	segment_start_x/m	segment_start_y /m	segment_start_z /m	segment_length /m	True Airspeed /(m/s)	NPD_interpolation _thrust /%
DH8C CI	1	-969,34	2030,66	0,00	2,00	88,75	15,28	4,40
DH8C CI	2	-880,59	2119,41	0,00	2,00	129,99	24,52	9,82
DH8C CI	3	-750,60	2249,40	0,00	2,00	171,22	33,77	15,25
DH8C CI	4	-579,38	2420,62	0,00	2,00	212,45	43,01	20,68
DH8C CI	5	-366,93	2633,07	0,00	2,00	66,93	52,26	26,10
DH8C CI	6	-300,00	2700,00	0,00	2,00	328,46	55,04	18,71
DH8C CI	7	28,11	3028,11	0,00	17,20	392,15	55,09	18,75
DH8C CI	8	419,71	3419,71	0,00	37,72	466,34	55,14	18,80
DH8C CI	9	885,41	3885,41	0,00	62,12	588,22	55,21	18,85
DH8C CI	10	1472,82	4472,82	0,00	92,91	789,59	55,29	18,92
DH8C CI	11	2261,33	5261,33	0,00	134,23	1171,14	55,40	19,02
DH8C CI	12	3430,87	6430,87	0,00	195,53	1070,60	55,57	19,16
DH8C CI	13	4500,00	7500,00	0,00	251,56	523,65	55,72	19,28
DH8C CI	14	5023,60	8020,94	-45,58	279,00	492,37	55,79	19,34
DH8C CI	15	5515,92	8495,89	-172,84	304,80	31,28	55,86	19,40
DH8C CI	16	5547,20	8526,06	-180,92	306,44	523,65	55,92	19,37
DH8C CI	17	6070,80	9000,00	-401,92	333,88	523,65	56,87	18,87
DH8C CI	18	6594,40	9428,36	-701,87	361,32	523,65	57,80	18,35
DH8C CI	19	7117,99	9798,13	-1071,64	388,76	523,65	58,72	17,82
DH8C CI	20	7641,59	10098,08	-1500,00	416,20	523,65	59,63	17,27
DH8C CI	21	8165,19	10319,08	-1973,94	443,64	258,72	60,53	16,71
DH8C CI	22	8423,89	10385,95	-2223,50	457,20	264,93	60,96	16,42
DH8C CI	23	8688,79	10454,42	-2479,06	471,08	523,65	61,12	16,32
DH8C CI	24	9212,39	10500,00	-3000,00	498,52	75,17	61,44	16,13
DH8C CI	25	9287,55	10493,46	-3074,78	502,46	448,48	61,48	16,10
DH8C CI	26	9735,99	10454,42	-3520,94	525,96	523,65	61,75	15,93
DH8C CI	27	10259,59	10319,08	-4026,06	553,41	523,65	62,07	15,73
DH8C CI	28	10783,19	10098,08	-4500,00	580,85	523,65	62,38	15,52
DH8C CI	29	11306,78	9798,13	-4928,36	608,29	523,65	62,69	15,32
DH8C CI	30	11830,38	9428,36	-5298,13	635,73	523,65	63,00	15,11
DH8C CI	31	12353,98	9000,00	-5598,08	663,17	523,65	63,31	14,90
DH8C CI	32	12877,58	8526,06	-5819,08	690,61	523,65	63,61	14,68
DH8C CI	33	13401,18	8020,94	-5954,42	718,05	523,65	63,92	14,47
DH8C CI	34	13924,78	7500,00	-6000,00	745,49	3227,40	64,22	14,25
DH8C CI	35	17147,76	4277,02	-6000,00	914,40	8777,02	66,05	12,80

case_ID	segment_ID	sigma / m	segment_start_x/m	segment_start_y/m	segment_start_z /m	segment_length /m	True Airspeed /(m/s)	NPD_interpolation _thrust /%
DH8C CI	36	25924,78	-4500,00	-6000,00	914,40	522,93	69,72	58,23
DH8C CI	37	26448,38	-5020,94	-5954,42	914,40	522,93	69,94	59,86
DH8C CI	38	26971,97	-5526,06	-5819,08	914,40	522,93	70,15	61,45
DH8C CI	39	27495,57	-6000,00	-5598,08	914,40	522,93	70,36	63,00
DH8C CI	40	28019,17	-6428,36	-5298,13	914,40	522,93	70,57	64,51
DH8C CI	41	28542,77	-6798,13	-4928,36	914,40	522,93	70,78	65,98
DH8C CI	42	29066,37	-7098,08	-4500,00	914,40	522,93	70,99	67,43
DH8C CI	43	29589,97	-7319,08	-4026,06	914,40	522,93	71,20	68,84
DH8C CI	44	30113,57	-7454,42	-3520,94	914,40	522,93	71,41	70,22
DH8C CI	45	30637,17	-7500,00	-3000,00	914,40	522,93	71,62	71,58
DH8C CI	46	31160,77	-7454,42	-2479,06	914,40	522,93	71,82	72,91
DH8C CI	47	31684,36	-7319,08	-1973,94	914,40	522,93	72,03	74,22
DH8C CI	48	32207,96	-7098,08	-1500,00	914,40	522,93	72,24	75,51
DH8C CI	49	32731,56	-6798,13	-1071,64	914,40	522,93	72,44	76,77
DH8C CI	50	33255,16	-6428,36	-701,87	914,40	522,93	72,65	78,02
DH8C CI	51	33778,76	-6000,00	-401,92	914,40	350,08	72,85	79,24
DH8C CI	52	34129,29	-5682,72	-253,97	914,40	173,92	72,99	80,05
DH8C CI	53	34302,36	-5526,06	-180,92	895,20	526,15	72,92	79,94
DH8C CI	54	34825,96	-5020,94	-45,58	837,10	526,15	72,72	79,59
DH8C CI	55	35349,55	-4500,00	0,00	779,00	2507,53	72,52	79,25
DH8C CI	56	37841,79	-2007,77	0,00	502,46	431,18	71,56	77,58
DH8C CI	57	38270,34	-1579,22	0,00	454,91	786,06	71,40	77,29
DH8C CI	58	39054,39	-795,16	0,00	398,83	305,58	65,69	83,52
DH8C CI	59	39359,20	-490,36	0,00	377,01	690,90	63,32	92,80
DH8C CI	60	40046,31	196,75	0,00	304,80	711,26	58,08	97,17
DH8C CI	61	40749,12	899,57	0,00	195,53	398,96	57,78	96,44
DH8C CI	62	41143,34	1293,79	0,00	134,23	268,98	57,62	96,03
DH8C CI	63	41409,13	1559,57	0,00	92,91	200,38	57,50	95,76
DH8C CI	64	41607,13	1757,57	0,00	62,12	158,86	57,42	95,55
DH8C CI	65	41764,10	1914,55	0,00	37,72	133,59	57,35	95,38
DH8C CI	66	41896,10	2046,55	0,00	17,20	111,63	57,29	95,25
DH8C CI	67	42006,70	2157,14	0,00	2,00	257,54	57,25	95,13
DH8C CI	68	42264,23	2414,68	0,00	2,00	210,71	47,71	104,42
DH8C CI	69	42474,95	2625,39	0,00	2,00	163,89	38,17	113,72
DH8C CI	70	42638,84	2789,29	0,00	2,00	117,06	28,62	123,01
DH8C CI	71	42755,90	2906,35	0,00	2,00	70,24	19,08	132,31
DH8C CI	72	42826,14	2976,59	0,00	2,00	23,41	9,54	141,60
DH8C CI	73	42849,55	3000,00	0,00	2,00		0,00	150,90

C Anhang (normativ)

C.1 CASE_ID: A320 DS, IP05, geometrische Flugsegmentparameter

۵,	\Box	m/	m/	E/	Æ	m/	s/u	noi N
case_ID	nodal point_ID	sigmaS /m	segment_start_x /m	٦ ک_	segment_start_z /m	segment_length /m	True Airspeed /m/s	NPD_interpolation _thrust /N
	dal p	Sig	_sta	_sta	sta	t_ler	eds.	iterp _th
	noc		nent	nent	nent	men.	e Air	٦
			segn	segment_start_y	segn	segr	Truc	N P
A320 DS	1	0	0	0	2	22,37	0	110076,04
A320 DS	2	22,37	22,37	0	2	67,12	9,3	108028,38
A320 DS	3	89,49	89,49	0	2	111,87	18,6	105980,71
A320 DS	4	201,36	201,36	0	2	156,61	27,9	103933,05
A320 DS	5	357,98	357,98	0	2	201,36	37,19	101885,39
A320 DS	6	559,34	559,34	0	2	246,11	46,49	99837,72
A320 DS	7	805,44	805,44	0	2	290,85	55,79	97790,05
A320 DS	8	1096,3	1096,3	0	2	335,6	65,09	95742,4
A320 DS	9	1431,9	1431,9	0	2	380,35	74,39	93694,73
A320 DS	10	1812,25	1812,25	0	2	106,71	83,69	91647,06
A320 DS	11	1917,87	1917,87	0	17,2	127,73	83,76	91726,28
A320 DS	12	2043,94	2043,94	0	37,72	151,89	83,84	91820,73
A320 DS	13	2193,86	2193,86	0	62,12	191,59	83,94	91932,93
A320 DS	14	2382,97	2382,97	0	92,91	257,18	84,07	92074,26
A320 DS	15	2636,81	2636,81	0	134,23	381,46	84,24	92263,63
A320 DS	16	3013,31	3013,31	0	195,53	680,07	84,49	92543,79
A320 DS	17	3684,54	3684,54	0	304,8	683,11	84,93	93041,17
A320 DS	18	4366,85	4366,85	0	337,9	746,5	93,19	91461,16
A320 DS	19	5112,47	5112,47	0	374,07	809,89	101,46	89881,15
A320 DS	20	5921,41	5921,41	0	413,31	909,36	109,72	88301,13
A320 DS	21	6829,78	6829,78	0	455,8	306,45	118,05	86754,18
A320 DS	22	7134,58	7134,58	0	487,56	143,85	118,26	67774,02
A320 DS	23	7277,66	7277,66	0	502,46	3976,68	118,35	67862,88
A320 DS	24	11232,95	11232,95	0	914,4	1072,1	120,73	70274,67
A320 DS	25	12304,37	12304,37	0	952,58	1128,34	127,23	70260,1
A320 DS	26	13431,99	13431,99	0	992,76	3024,95	133,74	70245,53
A320 DS	27	16442,34	16442,34	0	1289,61	3941,5	135,75	71615,17
A320 DS	28	20364,82	20364,82	0	1676,4	6633,81	138,32	73361,45
A320 DS	29	26970,56	26970,56	0	2286	9060,19	142,59	75596,8
A320 DS	30	35998,65	35998,65	0	3048	65734,25	148,25	77670,82
A320 DS	31	101500	101500	0	8576,53		148,25	77670,82

C.2 CASE_ID: A320 DS, IP05, Eingangsdaten für NPD-Interpolation

case_ID	receptor_ID	nodal point_lD	Lmax_noise_fraction	baseline_SEL /dB	acoustic_impedance_ adjustment /dB	speed_corr /dB	engine_Install_correction /dB	lateral_attenuation /dB	noise_fraction	start_of_roll_correction /dB	segment_SEL /dB
A320 DS	R05	1	83,75	93,35	0,11	12,48	-1,5	8,56	-47,32	0	48,56
A320 DS	R05	2	83,37	93,03	0,11	7,71	-1,5	8,56	-42,12	0	48,67
A320 DS	R05	3	82,99	92,71	0,11	5,49	-1,5	8,56	-39,2	0	49,06
A320 DS	R05	4	82,61	92,39	0,11	4,03	-1,5	8,56	-36,74	0	49,73
A320 DS	R05	5	82,23	92,07	0,11	2,94	-1,5	8,56	-34,33	0	50,73
A320 DS	R05	6	81,85	91,76	0,11	2,07	-1,5	8,56	-31,74	0	52,14
A320 DS	R05	7	81,47	91,44	0,11	1,34	-1,5	8,56	-28,79	0	54,04
A320 DS	R05	8	81,09	91,12	0,11	0,72	-1,5	8,56	-25,28	0	56,61
A320 DS	R05	9	80,71	90,8	0,11	0,18	-1,5	8,56	-20,9	0	60,12
A320 DS	R05	10	80,14	90,45	0,11	-0,08	-0,4	6,84	-23,09	0	60,15
A320 DS	R05	11	80,02	90,38	0,11	-0,08	-0,31	5,09	-20,66	0	64,35
A320 DS	R05	12	80,04	90,4	0,11	-0,09	-0,31	3,64	-18	0	68,48
A320 DS	R05	13	80,07	90,42	0,11	-0,09	-0,31	2,46	-14,46	0	73,2
A320 DS	R05	14	80,1	90,45	0,11	-0,1	-0,31	1,55	-9,75	0	78,86
A320 DS	R05	15	80,15	90,49	0,11	-0,11	-0,31	0,94	-4,43	0	84,81
A320 DS	R05	16	80,15	90,49	0,11	-0,11	-0,31	0,89	-4,05	0	85,24
A320 DS	R05	17	79,6	90,17	0,11	-0,14	-0,01	0,43	-12,66	0	77,05
A320 DS	R05	18	79,3	89,92	0,11	-0,54	-0,01	0,35	-20,02	0	69,12
A320 DS	R05	19	79,01	89,68	0,11	-0,91	-0,01	0,28	-25,61	0	62,98
A320 DS	R05	20	78,67	89,4	0,11	-1,25	0,01	0,22	-29,87	0	58,19
A320 DS	R05	21	79,74	89,99	0,11	-1,57	-1,08	0,15	-39,01	0	48,29
A320 DS	R05	22	75,11	85,89	0,11	-1,57	-1,08	0,11	-41,71	0	41,53
A320 DS	R05	23	75,13	85,91	0,11	-1,58	-1,08	0,09	-32,61	0	50,66
A320 DS	R05	24	70,51	82,93	0,11	-1,66	0,4	0	-40,65	0	41,13
A320 DS	R05	25	70,51	82,93	0,11	-1,89	0,4	0	-42,46	0	39,09
A320 DS	R05	26	75,77	86,47	0,11	-2,11	-1,5	0	-46,41	0	36,56
A320 DS	R05	27	76,11	86,78	0,11	-2,17	-1,5	0	-49,79	0	33,42
A320 DS	R05	28	76,47	87,11	0,11	-2,25	-0,95	0	-52,55	0	31,47
A320 DS	R05	29	75,85	86,86	0,11	-2,39	-0,04	0	-55,69	0	28,86
A320 DS	R05	30	76,37	87,33	0,11	-2,56	-0,04	0	-58,06	0	26,79
A320 DS	R05	31	76,37	87,33	0,11	-2,56	-0,04	0	-58,06	0	26,79

C.3 CASE_ID: A320 DS, IP05, geometrische Winkelbeziehungen

case_ID	receptor_ID	nodal point_ID	slant_distance / m	distance_d1 / m	distance_d2 / m	distance_q / m	lateral_displacement /m	NPD_interpolation_ distance / m	NPD_interpolation_thrust /N	angle_beta /°	angle_gamma /°	angle_phi /°	bank_angle /°
A320 DS	R05	1	500	3041,38	3019,32	3000	500	500	0,23	0	0,23	0	1
A320 DS	R05	2	500	3019,32	2953,14	2977,63	500	500	0,23	0	0,23	0	2
A320 DS	R05	3	500	2953,14	2842,95	2910,51	500	500	0,23	0	0,23	0	3
A320 DS	R05	4	500	2842,95	2688,92	2798,64	500	500	0,23	0	0,23	0	4
A320 DS	R05	5	500	2688,92	2491,35	2642,02	500	500	0,23	0	0,23	0	5
A320 DS	R05	6	500	2491,35	2250,8	2440,66	500	500	0,23	0	0,23	0	6
A320 DS	R05	7	500	2250,8	1968,27	2194,56	500	500	0,23	0	0,23	0	7
A320 DS	R05	8	500	1968,27	1645,89	1903,7	500	500	0,23	0	0,23	0	8
A320 DS	R05	9	500	1645,89	1288,7	1568,1	500	500	0,23	0	0,23	0	9
A320 DS	R05	10	528,47	1288,7	1192,18	1175,36	500	528,47	1,99	8,19	18,89	0	10
A320 DS	R05	11	535,18	1192,18	1079,57	1065,3	500	535,18	4,37	9,25	20,89	0	11
A320 DS	R05	12	535,18	1079,57	950,64	937,57	500	535,18	7,17	9,25	20,89	0	12
A320 DS	R05	13	535,18	950,64	799,6	785,68	500	535,18	10,66	9,25	20,89	0	13
A320 DS	R05	14	535,18	799,6	632,4	594,09	500	535,18	15,22	9,25	20,89	0	14
A320 DS	R05	15	535,18	632,4	537,04	336,9	500	535,18	20,89	9,25	20,89	0	15
A320 DS	R05	16	535,18	537,04	900,83	-44,55	500	535,18	21,61	9,25	20,89	0	16
A320 DS	R05	17	568,85	900,83	1494,14	-698,51	500	568,85	31,4	2,78	28,48	0	17
A320 DS	R05	18	568,85	1494,14	2202,83	-1381,61	500	568,85	34,08	2,78	28,48	0	18
A320 DS	R05	19	568,85	2202,83	2992,57	-2128,11	500	568,85	36,83	2,78	28,48	0	19
A320 DS	R05	20	571,29	2992,57	3889,08	-2937,53	500	571,29	39,61	2,68	28,93	0	20
A320 DS	R05	21	503,17	3889,08	4193,14	-3856,39	500	503,17	42,51	5,95	6,44	0	21
A320 DS	R05	22	503,2	4193,14	4335,99	-4162,84	500	503,2	44,43	5,95	6,46	0	22
A320 DS	R05	23	503,2	4335,99	8298,65	-4306,7	500	503,2	45,3	5,95	6,46	0	23
A320 DS	R05	24	796,98	8298,65	9366,36	-8260,29	500	796,98	61,35	2,04	51,14	0	24
A320 DS	R05	25	796,98	9366,36	10491,04	-9332,39	500	796,98	62,32	2,04	51,14	0	25
A320 DS	R05	26	501,28	10491,04	13513,31	-10479,06	500	501,28	63,38	5,63	0	0	26
A320 DS	R05	27	501,28	13513,31	17452,71	-13504,01	500	501,28	68,9	5,63	0	0	27
A320 DS	R05	28	505,39	17452,71	24084,51	-17445,4	500	505,39	73,46	5,27	8,37	0	28
A320 DS	R05	29	564,43	24084,51	33142,89	-24077,89	500	564,43	77,7	4,82	27,64	0	29
A320 DS	R05	30	564,43	33142,89	98873,94	-33138,08	500	564,43	80,72	4,82	27,64	0	30
A320 DS	R05	31	564,43	33142,89	98873,94	-33138,08	500	564,43	80,72	4,82	27,64	0	31

Literaturverzeichnis

- [1] RICHTLINIE (EU) 2015/996 DER KOMMISSION vom 19. Mai 2015 zur Festlegung gemeinsamer Lärmbewertungsmethoden gemäß der Richtlinie 2002/49/EG des Europäischen Parlaments und des Rates
- [2] Anhang der Delegierten Richtlinie der Kommission zur Änderung des Anhangs II der Richtlinie 2002/49/EG des Europäischen Parlaments und des Rates hinsichtlich gemeinsamer Methoden zur Lärmbewertung zwecks Anpassung an den wissenschaftlichen und technischen Fortschritt, C (2020) 9101 final, 21.12.2020
- [3] CNOSSOS-AT Lärmbewertungsmethoden für den Bereich Fluglärm entsprechend Kapitel 2.6 bis 2.8 der Richtlinie (EU) 2015/996, ausgegeben vom Bundesministerium für Klimaschutz, Umwelt, Energie, Mobilität, Innovation und Technologie am 15. Oktober 2021, Radetzkystraße 2, 1030 Wien

Bundesministerium für Klimaschutz, Umwelt, Energie, Mobilität, Innovation und Technologie
Radetzkystraße 2, 1030 Wien
+43 1 711 62 65-0
email@bmk.gv.at
bmk.gv.at